Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
Ta có:
\(\overline{xxyy}=x.1000+x.100+y.10+y=x.1100+y.11=11\left(x.100+y\right)\)
\(\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}=\overline{x+1}.11.\overline{y+1}.11\)
=> \(\overline{xxyy}=\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}\)
\(\Leftrightarrow11\left(x.100+y\right)=\overline{\left(x+1\right)}.11.\overline{\left(y+1\right)}.11\)
\(\Leftrightarrow x.100+y=11.\overline{x+1}.\overline{y+1}\)
\(\Leftrightarrow\overline{x0y}=11.\overline{x+1}.\overline{y+1}\)(1)
=> \(\overline{x0y}⋮11\)=> \(x-0+y⋮11\Rightarrow x+y⋮11\)=> x+y=11
và \(\overline{x0y}⋮x+1;\overline{x0y}⋮y+1\)
Em thay các giá trị x, y vào thử nhé
bạn ấn vào đúng 0 sẽ ra đáp án, mình giải bài này rồi
\(\Leftrightarrow-\dfrac{3}{4}< =x< =\dfrac{1}{2}\)
hay x=0
1)
(=)x2 = 82 + 62 = 64+36=100=102 = (-10)2
=> x=10 hoặc x=-10
2)
(=)|x-1| = -26/-24=13/12
=> x-1 = 13/12 hoặc x-1=-13/12
=> x= 25/12 hoặc x= -1/12
3)
(2x-4+7)\(⋮\left(x-2\right)\)
(=) 2(x-2) + 7 \(⋮\left(x-2\right)\)
(=) 7 \(⋮\left(x-2\right)\)
(=) x-2 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
(=) x\(\in\left\{-5;1;3;9\right\}\)
vì x bé nhất => x=-5
#Học-tốt
Cách 2: Do \(\left|x\right|\ge0\forall x\) nên \(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|\ge0\)
\(\Rightarrow5x-10\ge0\Rightarrow x\ge2\)
Với \(x\ge2\), ta có : \(x+7>0;x+1>0;x-2\ge0\)
Suy ra \(x+1+x-2+x+7=5x-10\)
\(\Leftrightarrow-2x=-16\Leftrightarrow x=8\left(tm\right)\)
Vậy x = 8.
Cách 1: Với \(x\le-7\), ta có : \(x+7\le0;x+1< 0;x-2< 0\)
Suy ra \(-x-1-x+2-x-7=5x-10\)
\(\Leftrightarrow-8x=-4\Leftrightarrow x=\frac{1}{2}\left(l\right)\)
Với \(-7< x\le-1\), ta có : \(x+7>0;x+1\le0;x-2< 0\)
Suy ra \(-x-1-x+2+x+7=5x-10\)
\(\Leftrightarrow-6x=-18\Leftrightarrow x=3\left(l\right)\)
Với \(-1< x\le2\), ta có : \(x+7>0;x+1>0;x-2\le0\)
Suy ra \(x+1-x+2+x+7=5x-10\)
\(\Leftrightarrow-6x=-20\Leftrightarrow x=\frac{10}{3}\left(l\right)\)
Với \(x>2\), ta có : \(x+7>0;x+1>0;x-2>0\)
Suy ra \(x+1+x-2+x+7=5x-10\)
\(\Leftrightarrow-2x=-16\Leftrightarrow x=8\left(tm\right)\)
Vậy x = 8.