K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>\(8\left(x-\dfrac{1}{2}\right)^x\cdot\left(x-\dfrac{1}{2}\right)=\left(x-\dfrac{1}{2}\right)^x\)

=>\(\left(x-\dfrac{1}{2}\right)^x\cdot\left(8x-4-1\right)=0\)

=>8x-5=0

=>x=5/8

Bài 1: 

b) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\left(x-3\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)

Vậy: \(x\in\left\{13;-7\right\}\)

a) Ta có: |x-2|=1

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Thay x=3 vào biểu thức \(6x^2+5x-2\), ta được:

\(6\cdot3^2+5\cdot3-2=54+15-2=67\)

Thay x=1 vào biểu thức \(6x^2+5x-2\), ta được:

\(6\cdot1^2+5\cdot1-2=6+5-2=9\)

Vậy: Khi |x-2|=1 thì giá trị của biểu thức \(6x^2+5x-2\) là 67 hoặc 9

1 tháng 9 2023

\(a,3-x=x+1,8\)

\(\Rightarrow-x-x=1,8-3\)

\(\Rightarrow-2x=-1,2\)

\(\Rightarrow x=0,6\)

\(b,2x-5=7x+35\)

\(\Rightarrow2x-7x=35+5\)

\(\Rightarrow-5x=40\)

\(\Rightarrow x=-8\)

\(c,2\left(x+10\right)=3\left(x-6\right)\)

\(\Rightarrow2x+20=3x-18\)

\(\Rightarrow2x-3x=-18-20\)

\(\Rightarrow-x=-38\)

\(\Rightarrow x=38\)

\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)

\(\Rightarrow8x-3+1=1+6x+x\)

\(\Rightarrow8x-3=7x\)

\(\Rightarrow8x-7x=3\)

\(\Rightarrow x=3\)

\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)

\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)

\(\Rightarrow-2x=\dfrac{10}{9}\)

\(\Rightarrow x=-\dfrac{5}{9}\)

1 tháng 9 2023

\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)

\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)

\(\Rightarrow x=\dfrac{16}{3}\)

\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)

\(\Rightarrow x-4=5-x\)

\(\Rightarrow x+x=5+4\)

\(\Rightarrow2x=9\)

\(\Rightarrow x=\dfrac{9}{2}\)

\(k,7x^2-11=6x^2-2\)

\(\Rightarrow7x^2-6x^2=-2+11\)

\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

\(m,5\left(x+3\cdot2^3\right)=10^2\)

\(\Rightarrow5\left(x+24\right)=100\)

\(\Rightarrow x+24=20\)

\(\Rightarrow x=-4\)

\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)

\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)

#\(Urushi\text{☕}\)

10 tháng 12 2023

Sửa đề:

 \(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)

ĐKXĐ: \(x\notin\left\{1;3;8;20\right\}\)

PT=>\(-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-8}-\dfrac{1}{x-8}+\dfrac{1}{x-20}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)

=>\(-\dfrac{1}{x-4}=-\dfrac{3}{4}\)

=>\(x-1=\dfrac{4}{3}\)

=>\(x=\dfrac{4}{3}+1=\dfrac{7}{3}\)(nhận)

3 tháng 12 2021

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

1 tháng 8 2021

P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )

Ta có : 

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)

Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)

\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)

20 tháng 11 2021

Áp dụng tc dtsbn:

\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

25 tháng 5 2022
AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.