K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

cộng 1 vào mỗi tỉ số,ta đc:

(x+5)/1995+1+(x+4)/1996+1+(x+3)/1997+1=(x+1995)/5+1+(x+1996)/4+1+(x+1997|/3+1

=>\(\frac{x+5+1995}{1995}+\frac{x+4+1996}{1996}+\frac{x+3+1997}{1997}=\frac{x+1995+5}{5}+\frac{x+1996+4}{4}+\frac{x+1997+3}{3}\)

\(\Rightarrow\frac{x+2000}{1995}+\frac{x+2000}{1996}+\frac{x+2000}{1997}-\frac{x+2000}{5}-\frac{x+2000}{4}-\frac{x-2000}{3}=0\)

\(\Rightarrow\left(x+2000\right)\left(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)

mà bt trong ngoặc thứ 2 khác 0

=>x+2000=0

=>x=-2000

x=-2000           

3 tháng 8 2015

ta có \(1+\frac{x+5}{1995}+1+\frac{x+4}{1996}+1+\frac{x+3}{1997}=1+\frac{x+1995}{5}+1+\frac{x+1996}{4}+1+\frac{x+1997}{3}\)

        \(=\frac{x+2000}{1995}+\frac{x+2000}{1996}+\frac{x+2000}{1997}=\frac{x+2000}{5}+\frac{x+2000}{4}+\frac{x+2000}{3}\)

     \(=\left(x+2000\right)\left(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}\right)=\left(x+2000\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\)  (1)

                     Xét     \(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}\ne\frac{1}{5}+\frac{1}{4}+\frac{1}{3}vàx+2000=x+2000\) (2)

                                        từ \(\left(1\right)\Leftrightarrow x+2000=0\) ( để (1) là đúng )

                                                          \(\Rightarrow x=2000\)

Suy ra \(\frac{x+1}{1999}+1+\frac{x+2}{1998}+1=\frac{x+3}{1997}+1+\frac{x+4}{1996}\)

Suy ra \(\frac{x+2000}{1999}+\frac{x+2000}{1998}=\frac{x+2000}{1997}+\frac{x+2000}{1996}\)

Suy ra \(\frac{x+2000}{1999}+\frac{x+2000}{1998}-\frac{x+2000}{1997}-\frac{x+2000}{1996}=0\)

Suy ra \(x+2000.\left(\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\right)=0\)

Vì \(\left(\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\right)\ne0\)

Suy ra x+2000=0

Suy ra x=-2000

Hok tốt

26 tháng 6 2021

Đề là gì đây?

26 tháng 6 2021

Tìm max

18 tháng 6 2017

1.\(\frac{1996}{\left|x\right|+1997}\)có GTLN \(\Leftrightarrow\left|x\right|+1997\)có GTNN.

Mà \(\left|x\right|+1997\ne0\)

Ta thấy: \(\left|x\right|\ge0\forall x\in R\Rightarrow\left|x\right|+1997\ge1997\)

\(\Rightarrow\left|x\right|=0\)thì \(\left|x\right|+1997\)có GTNN  là \(1997\)

\(\Rightarrow\)GTLN của \(\frac{1996}{\left|x\right|+1997}\)là \(\frac{1996}{1997}\)khi x=0

 2.\(\frac{\left|x\right|+1996}{-1997}=\frac{-\left(\left|x\right|+1996\right)}{1997}\)

\(\Rightarrow\left|x\right|+1996\)phải có GTNN thì \(\frac{\left|x\right|+1996}{-1997}\)đạt GTLN

Mà \(\left|x\right|\ge0\forall x\in R\Rightarrow x=0\)thì \(\left|x\right|+1996\)có GTNN là \(1996\)

Vậy GTLN của \(\frac{\left|x\right|+1996}{-1997}\)là \(\frac{1996}{-1997}\)khi x=0

18 tháng 2 2018

mình cùng có tên là Minh Thư đó

Chọn B

29 tháng 1 2022

B.

16 tháng 9 2021

\(\frac{x-1}{2000}+\frac{x-3}{1998}+\frac{x-5}{1996}+\frac{x}{667}=6\)

\(\Rightarrow\frac{x-1}{2000}+\frac{x-3}{1998}+\frac{x-5}{1996}+\frac{x}{667}-6=0\)

\(\Rightarrow\left(\frac{x-1}{2000}-1\right)+\left(\frac{x-3}{1998}+1\right)+\left(\frac{x-5}{1996}-1\right)+\left(\frac{x}{667}-3\right)=0\)

\(\Rightarrow\frac{x-1-2000}{2000}+\frac{x-3-1998}{1998}+\frac{x-5-1996}{1996}+\frac{x-3.667}{667}=0\)

\(\Rightarrow\frac{x-2001}{2000}+\frac{x-2001}{1998}+\frac{x-2001}{1996}+\frac{x-2001}{667}=0\)

\(\Rightarrow\left(x-2001\right)\left(\frac{1}{2000}+\frac{1}{1998}+\frac{1}{1996}+\frac{1}{667}\right)=0\)

Ta có: \(\frac{1}{2000}+\frac{1}{1998}+\frac{1}{1996}+\frac{1}{667}\ne0\)

\(\Rightarrow x-2001=0\Rightarrow x=2001\)

21 tháng 11 2017

GTLN của Q = -1996/1997 <=> x = 0

GTLN của P = -1996/1997 <=> x = 0

k cho mk nha