Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\sqrt{100-\left(x+1\right)^2}+2=\sqrt{\left(10-x-1\right)\left(10+x+1\right)}+2=\sqrt{\left(99-x\right)\left(x+101\right)}+2\)
\(=\left(99-x\right)+\left(x+101\right)+\sqrt{\left(99-x\right)\left(x+101\right)}=\left(\sqrt{99-x}+\sqrt{x+101}\right)^2\)
A là số chính phương chẵn => 99-x ; x+101 là số chính phương ( 99-x ; x+101 luôn cùng chẵn cùng lẻ)(-101</ x</ 99)
......................................................????
Do số chính phương chẵn chỉ có thể là số 2 nên \(\sqrt{199-x^2-2x}\)+2 =2
<=> \(\sqrt{199-x^2-2x}\)=0
<=> 199 -\(x^2\)-2x=0
<=> x=\(-1-10\sqrt{2}\) hoặc x=\(-1+10\sqrt{2}\)
Chuẩn ròi nha.. tick cho mik nha bạn.
a, \(x^3+2\sqrt{2}x^2+2x=0\)
\(x\left(x^2+2\sqrt{2}x+2\right)+0\)
\(x\left(x+\sqrt{2}\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+\sqrt{2}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\sqrt{2}\end{cases}}\)
Vậy x = 0 ; x = \(-\sqrt{2}\)
b,vì \(n^2+n+1\)là số chính phương nên đặt \(n^2+n+1=a^2\)với \(a\in N\)
\(n^2+n+1=a^2\)
\(\Leftrightarrow4n^2+4n+4=4a^2\)
\(\Leftrightarrow4n^2+4n+1+3=4a^2\)
\(\Leftrightarrow\left(2n+1\right)^2+3=4a^2\)
\(\Leftrightarrow4a^2-\left(2n+1\right)^2=3\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)
Ta thấy \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=3\end{cases}}\) Vì \(\left(2a+2n+1>2a-2n-1>0\right)\)
\(\Leftrightarrow\hept{\begin{cases}2\left(a-n\right)=2\\2\left(a+n\right)=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a-n=1\\a+n=1\end{cases}}\)
\(a-n=1\Rightarrow a=1+n\)
\(\Rightarrow1+n+n=1\)
\(\Leftrightarrow2n=1-1\)
\(\Leftrightarrow2n=0\)
\(\Leftrightarrow n=0\)
Đặt x2 + 2x + 8 = y2
<=> (x2 + 2x + 1) + 7 = y2
<=> (x + 1)2 - y2 = - 7
<=> (x + 1 - y)(x + 1 + y) = - 7 = - 1.7 = - 7.1
Với x + 1 - y = - 1 thì x + 1 + y = 7
<=> x - y = - 2 và x + y = 6
=> x = ( 6 - 2 ) : 2 = 2
Với x + 1 - y = - 7 thì x + 1 + y = 1
<=> x - y = - 8 và x + y = 0
=> x = ( 0 - 8 ) : 2 = - 4 ( loại )
Vậy x = 2 thì x2 + 2x + 8 là số CP
câu 2 nề
A=\(\frac{2x+1}{x^2+2}\)=\(\frac{x^2+2-2x-x^2-1}{x^2+2}\)= \(\frac{x^2+2}{x^2+2}\)-\(\frac{x^2+2x+1}{x^2+2}\) 1- \(\frac{x^2+2x+1}{x^2+2}\)= 1- \(\frac{\left(x+1\right)^2}{x^2+2}\)
vậy max A = 1 khi x= -1