K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

bạn gửi câu hỏi nên bị trừ hết cup đó

4 tháng 4 2016

D=D+1:C=C+D5 CALC =cho tới số 63=1092336538×1010

                                                                             =1092336538

\(\Rightarrow\) X= 63

9 tháng 2 2023

\(\dfrac{x-55}{45}+\dfrac{x-30}{35}+\dfrac{x-25}{25}+\dfrac{x-40}{15}=10\)

\(< =>\dfrac{x-55}{45}+\dfrac{x-30}{35}+\dfrac{x-25}{25}+\dfrac{x-40}{15}-10=0\)

\(< =>\dfrac{x-55}{45}-1+\dfrac{x-30}{35}-2+\dfrac{x-25}{25}-3+\dfrac{x-40}{15}-4=0\)

\(< =>\dfrac{x-100}{45}+\dfrac{x-100}{35}+\dfrac{x-100}{25}+\dfrac{x-100}{15}=0\)

\(< =>\left(x-100\right)\left(\dfrac{1}{45}+\dfrac{1}{35}+\dfrac{1}{25}+\dfrac{1}{15}\right)=0\)

\(< =>x-100=0\left(\dfrac{1}{45}+\dfrac{1}{35}+\dfrac{1}{25}+\dfrac{1}{15}\ne0\right)\)

\(< =>x=100\)

24 tháng 2 2022

\(35>15x>25\\ \Leftrightarrow\dfrac{35}{15}>x>\dfrac{25}{15}\\ \Leftrightarrow\dfrac{7}{3}>x>\dfrac{5}{3}\)

9 tháng 9 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

25 tháng 10 2020

Bài 1 : 

\(49\left(x-2\right)^2-25\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[7\left(x-2\right)-5\left(2x+1\right)\right]\left[7\left(x-2\right)+5\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(7x-14-10x-5\right)\left(7x-14+10x+5\right)=0\)

\(\Leftrightarrow\left(-3x-19\right)\left(17x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-3x=19\\17x=9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-19}{3}\\x=\frac{9}{17}\end{cases}}}\)

Bài 2 : 

+) \(9x^2-6xy+y^2-21x+7y\)

\(=\left(3x-y\right)^2-7\left(3x-y\right)\)

\(=\left(3x-y\right)\left(3x-y-7\right)\)

+) \(x^2+2x-35\)

\(=x^2+2x+1-36\)

\(=\left(x+1-6\right)\left(x+1+6\right)\)

\(=\left(x-5\right)\left(x+7\right)\)

+) \(2x^2+9x-5\)

\(=2x^2-x+10x-5\)

\(=x\left(2x-1\right)+5\left(2x-1\right)\)

\(=\left(2x-1\right)\left(x+5\right)\)

+) \(6x^2+23x+15\)

\(=6x^2+18x+5x+15\)

\(=6x\left(x+3\right)+5\left(x+3\right)\)

\(=\left(x+3\right)\left(6x+5\right)\)

7 tháng 8 2018

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
19 tháng 3 2023

\(\dfrac{AB}{CD}=\dfrac{3}{5}\\ =>\dfrac{AB}{2,5}=\dfrac{3}{5}\\ =>AB=\dfrac{2,5\cdot3}{5}=1,5\)

1,5 mà nhỉ