K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

bây giờ ít người giải bài lớp 8 , 9 lắm bạn ơi

26 tháng 1 2016

Nếu khó quá thì nên hoc24.vn nhé 

11 tháng 1 2023

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

11 tháng 1 2023

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

16 tháng 12 2022

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

16 tháng 12 2022

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

1: Ta có: \(4x^2-36=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

2: Ta có: \(\left(x-1\right)^2+x\left(4-x\right)=11\)

\(\Leftrightarrow x^2-2x+1+4x-x^2=11\)

\(\Leftrightarrow2x=10\)

hay x=5

a/ \(x=\dfrac{-5}{12}\)

b/ \(x\approx-1,9526\)

c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)

d/ \(x=\dfrac{-20}{13}\)

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0

⇒ 24x+10=0

⇒ 24x=-10

⇒ x=-5/12

26 tháng 12 2021

a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)

f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

Trong trường hợp sau tìm 2 đa thức P và Q sau cho thỏa mãn đẳng thức :\(\frac{\left(x+2\right)P}{x-2}=\frac{\left(x-1\right)Q}{x^2-4}.\)giải. Ta có :\(\left[\left(x+2\right)P\right].\left(x-2\right)\left(x+2\right)=\left[\left(x-1\right)Q\right].\left(x-2\right).\)\(\Leftrightarrow\left(x+2\right).P\left(x+2\right)=\left(x-1\right).Q.\)\(\Leftrightarrow...
Đọc tiếp

Trong trường hợp sau tìm 2 đa thức P và Q sau cho thỏa mãn đẳng thức :

\(\frac{\left(x+2\right)P}{x-2}=\frac{\left(x-1\right)Q}{x^2-4}.\)

giải. Ta có :

\(\left[\left(x+2\right)P\right].\left(x-2\right)\left(x+2\right)=\left[\left(x-1\right)Q\right].\left(x-2\right).\)

\(\Leftrightarrow\left(x+2\right).P\left(x+2\right)=\left(x-1\right).Q.\)

\(\Leftrightarrow P.\left(x+2\right)^2=Q.\left(x-1\right).\)

\(\Leftrightarrow\frac{P}{Q}=\frac{\left(x-1\right)}{\left(x+2\right)^2}.\)

\(\Rightarrow\hept{\begin{cases}P=x-1\\Q=\left(x+2\right)^2=\left(x+2\right)\left(x+2\right)=x^2+2x+2x+4=x^2+4x+4\end{cases}}\)

Cô ơi, khi em dùng 2 giá trị P và Q vừa tìm được thay vào đề bài rồi thử lại bằng cách : \(A.D=B.C\)nhưng sau khi em thay P và Q vào tính toán rồi nhân chéo nhưng kết quả là : 2 Tích A.D và B.C lại giống số nhau hết nhưng dấu khác nhau A.D= -(B.D) ạ ?

Cô ơi, cô giúp em thứ chi tiết từng bước đề 2 phân thức này bằng nhau nhe cô, (cô thay giá trị và tính chi tiết giúp em nhe cô. Em cám ơn cô. :)

 

3
5 tháng 11 2016

Bạn làm đúng rồi.

Bước thử lại có thể bạn nhầm.

5 tháng 11 2016

Có vô số cặp đa thức (P ; Q) thỏa mãn đề bài với P = k.(x - 1) ; P = k.(x + 2)2 (k\(\in N\))

Bạn thử lại bị sai thôi,làm đúng thì sai thế nào được ?

Chỗ (x + 2)2 bạn còn rập khuôn quá,cứ chuyển ra dạng tích 2 đa thức,phải áp dụng hằng đẳng thức bình phương của tổng chứ !

6 tháng 7 2023

5) \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2\)

\(=\left(x-y-x-y\right)^2\)

\(=\left(-2y^2\right)\)

\(=4y^2\)

6) \(\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)\)

\(=\left(x-5\right)^2-2\left(x-5\right)\left(x+5\right)+\left(x+5\right)^2\)

\(=\left[\left(x-5\right)-\left(x+5\right)\right]^2\)

\(=\left(x-5-x-5\right)^2\)

\(=\left(-10\right)^2=100\)

7) \(\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)

\(=\left(x-2\right)^2-2\left(x-2\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left[\left(x-2\right)-\left(x+1\right)\right]^2\)

\(=\left(-3\right)^2=9\)

8) \(-\left(2x+3y\right)^2+\left(2x-3y\right)^2-2\left(4x^2-9y^2\right)\)

\(=\left(2x-3y\right)^2+2\left(2x+3y\right)\left(2x-3y\right)+\left(2x+3y\right)^2\)

\(=\left[\left(2x+3y\right)+\left(2x-3y\right)\right]^2\)

\(=\left(4x\right)^2=16x^2\)