K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
4 tháng 9 2021

biểu thức trên nguyên khi và chỉ khi \(\hept{\begin{cases}\sqrt{x^2+7}=m\\\sqrt{x^3+9}=n\end{cases}\text{ với m,n là các số tự nhiên}}\)

hay ta có : \(\hept{\begin{cases}m^2-x^2=7\\n^2-x^3=9\end{cases}}\Rightarrow\left(m-x\right)\left(m+x\right)=7\Rightarrow\hept{\begin{cases}m+x=7\\m-x=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\x=3\end{cases}}\)

thay x=3 thỏa mãn đề bài vậy x=3 là giá trị nguyên của x t/m

NM
4 tháng 9 2021

mình quên mất một ý nhỏ 

còn trường hợp khác là :\(\hept{\begin{cases}m+x=1\\m-x=7\end{cases}\Rightarrow\hept{\begin{cases}m=4\\x=-3\end{cases}}}\) trường hợp này loại do điều kiện tồn tại của căn

5 tháng 9 2021

Đặt \(y=\sqrt{x^2+7}+\sqrt{x^3+9}\)

\(\Leftrightarrow y-\sqrt{x^2+7}=\sqrt{x^3+9}\)

\(\Leftrightarrow\left(y-\sqrt{x^2+7}\right)^2=x^3+9\)

\(\Leftrightarrow y^2-2y\sqrt{x^2+7}+x^2+7=x^3+9\)

\(\Leftrightarrow y^2+x^2-x^3-2=2y\sqrt{x^2+7}\)

Ta thấy VT là số nguyên nên VP cũng phải là số nguyên

\(\Rightarrow x^2+7\)phải là số chính phương

Đặt \(x^2+7=z^2\)với z là số nguyên dương và z > x

\(\Leftrightarrow\left(z+x\right)\left(z-x\right)=7\)

Tới đây làm nốt nha

13 tháng 7 2016

Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))

Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)

\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)

\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)

Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)

13 tháng 7 2016

Phần đặt ẩn a,b,c bạn bỏ đi nhé ^^

20 tháng 5 2017

Không mất tính tổng quát ta giả sử \(x\ge y\)

Ta có:

\(x^2< x^2+8y\le x^2+8x< x^2+8x+16=\left(x+4\right)^2\)

\(\Rightarrow x^2+8y=\left(x+1\right)^2or\left(x+2\right)^2or\left(x+3\right)^2\)

PS: Vì e là CTV nên a chỉ gợi ý thôi nha. Phần còn lại e thử tự nghĩ xem sao nhé. A giải quyết cho e phần khó nhất rồi đấy :)

4 tháng 8 2019

Anh Alibaba Nguyễn, giải tìm x ntn vậy, em mới tìm được y thôi

NV
5 tháng 3 2023

\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)

\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)

\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)

Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)

\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau

Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP

\(\Rightarrow4y^2+6y-3=k^2\)

\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)

\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)

Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn

Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)

Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)

18 tháng 2 2021

7x=3.2y+17x=3.2y+1

Xét x<0x<0
Đặt t = -x pt trở thành:
1=7t(3.2y+1)1=7t(3.2y+1)
Vì 2y>0,7t≥1⇒VP≥12y>0,7t≥1⇒VP≥1 Phương trình vô nghiệm.

Xét x≥0⇒y≥1x≥0⇒y≥1 ta có:
7x=3.2y+17x=3.2y+1
66 đồng dư với −1−1 theo module 77
⇒6.2(y−1)=3.2y⇒6.2(y−1)=3.2y đồng dư với −2(y−1)−2(y−1) theo module 77
Mặt khác ta lại có 3.2y+13.2y+1 chia hết cho 7
⇒2(y−1)−1⇒2(y−1)−1 chia hết cho 7
Đặt 2(y−1)=7m⇒2(y−1)=7m+12(y−1)=7m⇒2(y−1)=7m+1 (1)
Vì m nguyên ⇒y≥1⇒y≥1
Với y=1⇒x=1,m=0y=1⇒x=1,m=0
Với y>1y>1 ta có VT luôn chia hết cho 2 => m lẻ, m=2k+1m=2k+1
PT (1) trở thành 2(y−1)=14m+8⇔2(y−2)=7k+42(y−1)=14m+8⇔2(y−2)=7k+4 
Vì k nguyên => y≥2y≥2 (2)
VT chia hết cho 2 => VP chia hết cho 2 => k chẳn, k=2nk=2n
⇒2(y−2)=14n+4⇒2(y−2)=14n+4
biện luận tương tự => n chẳn , n = 2p
2(y−3)=14p+2⇒2(y−4)=7p+12(y−3)=14p+2⇒2(y−4)=7p+1
Vì p nguyên ⇒y≥4⇒y≥4 (2)
Nếu y>4⇒y>4⇒ VT luôn chia hết cho 2, VP luôn không chia hết cho 2
⇒y≤4⇒y≤4 (3)
Từ (2) và (3) suy ra y=4⇒x=2y=4⇒x=2

Vậy phương trình có nghiệm (1,1) (2,4)

15 tháng 6 2019

\(VD1\)

Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)

\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)

\(\Rightarrow\sqrt{x}\le4,5\)

\(\Rightarrow x\le4,5^2\)

\(\Rightarrow x\le20,25\)

\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)

TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)

TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)

Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)

Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)

Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)

Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )

KL....
 

15 tháng 6 2019

VD2: Ta có:

x+y+z=xyz ( 1 )

Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:

\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Giả sử \(x\ge y\ge z\ge1\)thì ta có:

\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)

Thay z=1 vào ( 1 ) ta đc:

x+y+1=xy

\(\Leftrightarrow\)xy -x - y = 1

\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2

\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2

Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3