Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(y=\sqrt{x^2+7}+\sqrt{x^3+9}\)
\(\Leftrightarrow y-\sqrt{x^2+7}=\sqrt{x^3+9}\)
\(\Leftrightarrow\left(y-\sqrt{x^2+7}\right)^2=x^3+9\)
\(\Leftrightarrow y^2-2y\sqrt{x^2+7}+x^2+7=x^3+9\)
\(\Leftrightarrow y^2+x^2-x^3-2=2y\sqrt{x^2+7}\)
Ta thấy VT là số nguyên nên VP cũng phải là số nguyên
\(\Rightarrow x^2+7\)phải là số chính phương
Đặt \(x^2+7=z^2\)với z là số nguyên dương và z > x
\(\Leftrightarrow\left(z+x\right)\left(z-x\right)=7\)
Tới đây làm nốt nha
Áp dụng Cosi
\(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}\ge2\)
\(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}\ge4\)
\(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}\ge8\)
=> VT >/ VP
Dấu ' = ' xảy ra khi 2x -3 =1=>x =2
y -2 = 4 => y =6
3z -1 =16 => z =17/3
Ta có: \(\frac{xy+1}{x+y}\ge\frac{3y+1}{x+y}\ge\frac{3y+1}{2y}>\frac{3y}{2y}=\frac{3}{2}\)( mâu thuẫn với gt)
giả sử \(a\le2\Rightarrow a\in\left\{1;2\right\}\)
+ Với a=1 \(\Rightarrow M=\frac{y^3+1}{y^3+1}=1\)
+ Với a=2 \(\Rightarrow M=\frac{8y^3+1}{y^3+8}\)
Từ đk \(\frac{xy+1}{x+y}=\frac{2y+1}{y+2}< \frac{3}{2}\Rightarrow b< 4\)
=> \(b\in\left\{1;2;3\right\}\)
+ Với b=1 \(\Rightarrow M=\frac{9}{9}=1\)
+ Với b=2 \(\Rightarrow M=\frac{8.8+1}{8+8}=\frac{65}{16}\)
+ vỚI b=3 \(\Rightarrow M=\frac{8.27+1}{27+8}=\frac{217}{35}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\) hoặc ngược lại.
mình làm mẫu thôi, bên dưới tương tự bạn nhé
a, \(\frac{\sqrt{x}+6}{\sqrt{x}-3}=\frac{\sqrt{x}-3+9}{\sqrt{x}-3}=1+\frac{9}{\sqrt{x}-3}\)ĐK : \(x\ge0;x\ne9\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\sqrt{x}-3\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | 16 | 4 | 36 | 0 | 144 | loại |
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
biểu thức trên nguyên khi và chỉ khi \(\hept{\begin{cases}\sqrt{x^2+7}=m\\\sqrt{x^3+9}=n\end{cases}\text{ với m,n là các số tự nhiên}}\)
hay ta có : \(\hept{\begin{cases}m^2-x^2=7\\n^2-x^3=9\end{cases}}\Rightarrow\left(m-x\right)\left(m+x\right)=7\Rightarrow\hept{\begin{cases}m+x=7\\m-x=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\x=3\end{cases}}\)
thay x=3 thỏa mãn đề bài vậy x=3 là giá trị nguyên của x t/m
mình quên mất một ý nhỏ
còn trường hợp khác là :\(\hept{\begin{cases}m+x=1\\m-x=7\end{cases}\Rightarrow\hept{\begin{cases}m=4\\x=-3\end{cases}}}\) trường hợp này loại do điều kiện tồn tại của căn