K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

a) Ta có:

\(2n+1⋮n-3\)

\(\Rightarrow\left(2n-6\right)+7⋮n-3\)

\(\Rightarrow2\left(n-3\right)+7⋮n-3\)

\(\Rightarrow7⋮n-3\)

\(\Rightarrow n-3\in\left\{1;7\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n-3=1\Rightarrow n=4\\n-3=7\Rightarrow n=10\end{matrix}\right.\)

Vậy n=4 hoặc n=10

b) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in\left\{1;13\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+3=1\Rightarrow n=-2\left(loai\right)\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy n=10

c) Ta có:

\(n^2+3⋮n-1\)

\(\Rightarrow n^2-1+4⋮n-1\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)+4⋮n-1\)

\(\Rightarrow n+1+4⋮n-1\)

\(\Rightarrow n+5⋮n-1\)

\(\Rightarrow\left(n-1\right)+6⋮n-1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\in\left\{1;2;3;6\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\\n-1=3\Rightarrow n=4\\n-1=6\Rightarrow n=7\end{matrix}\right.\)

Vậy n=2 hoặc n=3 hoặc n=4 hoặc n=7

19 tháng 11 2017

a,\(2n+1=2n-6+7=2\left(n-3\right)+7\)

Do \(2\left(n-3\right)⋮n-3\)

\(\Rightarrow n-3\in\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow\left[{}\begin{matrix}n-3=1\\n-3=-1\\n-3=7\\n-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=4\\n=2\\n=10\\n=-4\end{matrix}\right.\)

Bài 1:

a) Ta có: (a-b)+(c-d)-(a+c)

=a-b+c-d-a-c

=-b-d(1)

Ta lại có: -(b+d)=-b-d(2)

Từ (1) và (2) suy ra (a-b)+(c-d)-(a+c)=-(b+d)

b) Ta có: (a-b)-(c-d)+(b+c)

=a-b-c+d+b+c

=a+d(đpcm)

c) Ta có: a(b-c)-b(a-c)

=ab-ac-ab+cb

=cb-ca

=c(b-a)(đpcm)

d) Ta có: b(c-a)+a(b-c)

=bc-ba+ab-ac

=bc-ac

=c(b-a)(đpcm)

e) Ta có: -c(-a+b)+b(c-a)

=ca-cb+bc-ba

=ca-ba

=a(c-b)(đpcm)

g) Ta có: a(c-b)-b(-a-c)

=ac-ab+ba+bc

=ac+bc

=c(a+b)(đpcm)

29 tháng 2 2020

Cảm ơn bạn rất nhiều nha

14 tháng 1 2018

a) \(n+1\inƯ\left(n^2+2n-3\right)\)

\(\Leftrightarrow n^2+2n-3⋮n+1\)

\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)

\(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)

\(\Leftrightarrow n+1-4⋮n+1\)

\(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\) \(-2\) \(2\) \(-4\) \(4\)
\(n\) \(-2\) \(0\) \(-3\) \(1\) \(-5\) \(3\)

Vậy...

b) \(n^2+2\in B\left(n^2+1\right)\)

\(\Leftrightarrow n^2+2⋮n^2+1\)

\(\Leftrightarrow n^2+1+1⋮n^2+1\)

\(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n^2+1\) \(-1\) \(1\)
\(n\) \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai)

\(0\) (tm)

Vậy \(n=0\)

c) \(2n+3\in B\left(n+1\right)\)

\(\Leftrightarrow2n+3⋮n+1\)

\(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\)
\(n\) \(-2\) \(0\)

Vậy...

18 tháng 1 2018

a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)

⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1

⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1

n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1

⇔n+1−4⋮n+1⇔n+1−4⋮n+1

n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}

Ta có bảng sau:

n+1n+1 −1−1 11 −2−2 22 −4−4 44
nn −2−2 00 −3−3 11 −5−5 33

Vậy...

b) n2+2∈B(n2+1)n2+2∈B(n2+1)

⇔n2+2⋮n2+1⇔n2+2⋮n2+1

⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1

n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}

Ta có bảng sau:

n2+1n2+1 −1−1 11
nn √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai)

00 (tm)

Vậy n=0n=0

c) 2n+3∈B(n+1)2n+3∈B(n+1)

⇔2n+3⋮n+1⇔2n+3⋮n+1

⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1

⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1

2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}

Ta có bảng sau:

n+1n+1 −1−1 11
nn −2−2 00
30 tháng 7 2018

2)

a. \(n+5⋮n-2\Rightarrow n-2+7⋮n-2\)

\(\Rightarrow7⋮n-2\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{-5;1;3;9\right\}\)

b. \(2n+1⋮n-5\Rightarrow2n-10+11⋮n-5\)

\(\Rightarrow11⋮n-5\Rightarrow n-5\inƯ\left(11\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{-6;4;6;16\right\}\)

c. \(n^2+3n-13⋮n+3\)

\(\Rightarrow n.n+3n-13⋮n+3\)

\(\Rightarrow n.\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\Rightarrow n+3\inƯ\left(-13\right)=\left\{\pm1;\pm13\right\}\)

\(\Rightarrow n\in\left\{-16;-4;-2;10\right\}\)

d. \(n^2+3⋮n-1\Rightarrow n^2-n+n+3⋮n-1\)

\(\Rightarrow n.\left(n-1\right)+\left(n-1\right)+4⋮n-1\)

\(\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{-3;-1;0;2;3;5\right\}\)

30 tháng 7 2018

Bạn ko làm bài 1 à

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

Bài 2: 

a: \(\Leftrightarrow n-10+9⋮n-10\)

\(\Leftrightarrow n-10\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{11;9;13;7;19;1\right\}\)

b: \(\Leftrightarrow3n+9⋮3n-3\)

\(\Rightarrow3n-3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

hay \(n\in\left\{\dfrac{4}{3};\dfrac{2}{3};\dfrac{5}{3};\dfrac{1}{3};2;0;\dfrac{7}{3};-\dfrac{1}{3};3;-1;5;-3\right\}\)

c: \(\Leftrightarrow12n+2⋮4n-3\)

\(\Leftrightarrow4n-3\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{1;\dfrac{1}{2};\dfrac{7}{2};-2\right\}\)

26 tháng 11 2016

a) n + 5 ( n # 0 )

26 tháng 11 2016

sorry nha , chị nhấn lộn