Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(N=\left(x-6\right)^2+3x^2\)
\(=x^2-12x+36+3x^2\)
\(=4x^2-12x+36\)
\(=\left(2x-3\right)^2+27\)
Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\Rightarrow N\ge27\forall x\)
Dấu "=" xảy ra khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy giá trị nhỏ nhất của \(A=27\Leftrightarrow x=\dfrac{3}{2}\)
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
1a, 15-/2x-1/=8
=>/2x-1/=15-8 =7
=> 2x-1 =8 hoặc 2x-1=-8
=>2x =8+1=9 hoặc 2x=-8+1 =-7
=> x = 9:2 =4,5 hoặc 2x = (-7):2 = -3,5
vậy..........
1b, /x+2/ +/5-2y/ =0
=> /x+2/=0và /5-2y/ =0
=> x=2 và 2y =5
=>x=2 và y=2,5
vậy....................
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8