Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left|12,1x+12,1.0,1\right|=12,1\)
\(\Leftrightarrow\left|12,1.\left(x+0,1\right)\right|=12,1\)
\(\Leftrightarrow\left[{}\begin{matrix}12,1.\left(x+0,1\right)=12,1\\12,1.\left(x+0,1\right)=-12,1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+0,1=1\\x+0,1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0,9\\x=-1,1\end{matrix}\right.\)
Vậy ................
b/ \(\left|0,2x-3,1\right|+\left|0,2x+3,1\right|=0\)
Mà \(\left\{{}\begin{matrix}\left|0,2x-3,1\right|\ge0\\\left|0,2x+3,1\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|0,2x-3,1\right|=0\\\left|0,2x+3,1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0,2x-3,1=0\\0,2x+3,1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0,2x=3,1\\0,2x=-3,1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=15,5\\x=-15,5\end{matrix}\right.\)
Vậy ..
tìm x,y biết
a, \(\left(x-0,2\right)^{10}+\left(y+3,1\right)^{20}=0\)
b, \(\left(x^2-3^2\right)=16\)
a.
Ta có: (x - 0,2)^10 \(\ge\)0 với mọi x
Ta có: (y+ 3,1)^20 \(\ge\)0 với mọi y
\(\Rightarrow\)( x - 0,2 )^10 = 0 và ( y + 3,1 ) ^20 = 0 (vì chúng cộng lại thì bằng 0 và chúng lớn hơn hoặc bằng 0)
\(\Rightarrow\) ( x - 0,2 ) ^ 10 =0
x - 0,2 = 0
x = 0,2
\(\Rightarrow\)( y + 3,1 ) ^ 20 =0
y + 3,1 = 0
y = - 3,1
Vậy x = 0,2 và y = - 3,1
b, (x^2 - 3^2 )= 16
x^ 2 - 9 =16
x^2 = 25
x^2 = (\(\pm\)5)^2
x = \(\pm\)5.
Vậy x = \(\pm\) 5
|0,2 . x - 3,1| + |0,2 . x + 3,1| = 0
Ta có: \(\hept{\begin{cases}\left|0,2.x-3,1\right|\ge0\\\left|0,2.x+3,1\right|\ge0\end{cases}}\)
Mà theo đề bài: |0,2 . x - 3,1| + |0,2 . x + 3,1| = 0
\(\Rightarrow\hept{\begin{cases}0,2.x-3,1=0\\0,2.x+3,1=0\end{cases}}\Rightarrow\hept{\begin{cases}0,2.x=3,1\\0,2.x=-3,1\end{cases}}\Rightarrow\hept{\begin{cases}x=15,5\\x=-15,5\end{cases}}\)
Vay x = 15,5 ; -15,5
a) |0,2x - 3,1| = 6,3
\(0,2x-3,1=\pm6,3\)
Th1:
0,2x - 3,1 = 6,3
0,2x = 6,3 + 3,1
0,2x = 9,4
x = 9,4 : 0,2
x = 47
Th2:
0,2x - 3,1 = - 6,3
0,2x = - 6,3 + 3,1
0,2x = - 3,2
x = - 3,2 : 0,2
x = - 16
Vậy x = 47 hoặc x = - 16
b) |12,1x + 12,1 . 0,1| = 12,1
|12,1(x + 0,1)| = 12,1
\(12,1\left(x+0,1\right)=\pm12,1\)
Th1:
12,1(x + 0,1) = 12,1
x + 0,1 = 1
x = 1 - 0,1
x = 0,9
Th2:
12,1(x + 0,1) = - 12,1
x + 0,1 = - 1
x = - 1 - 0,1
x = - 1,1
Vậy x = 0,9 hoặc x = - 1,1
c) |0,2x - 3,1| + |0,2.x + 3,1| = 0
|0,2x - 3,1| + |0,2x + 3,1| \(\ge\) |0,2x - 3,1 + 0,2x + 3,1| = 0,4x
mà |0,2x - 3,1| + |0,2.x + 3,1| = 0
=> x = 0
x + x : 0,2 = 1,35
x * 1 + x * 5 = 1,35
x * ( 1 + 5 ) = 1,35
x * 6 = 1,35
x = 1,35 : 6
x = 0,225
hok tốt nha ^_^
Vì \(\left|0,2x-3,1\right|\ge0\); \(\left|0,2x+3,1\right|\ge0\)
Mà theo đề bài: \(\left|0,2x-3,1\right|+\left|0,2x+3,1\right|=0\)
\(\Rightarrow\begin{cases}\left|0,2x-3,1\right|=0\\\left|0,2x+3,1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}0,2x-3,1=0\\0,2x+3,1=0\end{cases}\)\(\Rightarrow\begin{cases}0,2x=3,1\\0,2x=-3,1\end{cases}\)
vô lý vì 0,2x không thể nhận cùng lúc 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
\(\left|0,2x-3,1\right|+\left|0,2x+3,1\right|=0\)
Vì \(\left|0,2x-3,1\right|\ge0\) \(;\) \(\left|0,2x+3,1\right|\ge0\)
Theo đề bài , ta có : \(\left|0,2x-3,1\right|+\left|0,2x+3,1\right|=0\)
\(\Rightarrow\begin{cases}\left|0,2x-3,1\right|=0\\\left|0,2x+3,1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}0,2x-3,1=0\\0,2x+3,1=0\end{cases}\)
\(\Rightarrow\begin{cases}0,2x=3,1\\0,2x=-3,1\end{cases}\)
Vô lí vì \(0,2\) không thể nhận cùng lúc hai giá trị khác nhau.
Vậy không tồn tại giá trị của \(x\) để thoã mãn đề bài.
mình biết làm đấy nhưng không biết ghi vào đây như thế nào!
\(\left|0,2x-3,1\right|+\left|0,2x+3,1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|0,2x-3,1\right|=0\\\left|0,2x+3,1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0,2x-3,1=0\\0,2x+3,1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0,2x=3,1\\0,2x=-3,1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=15,5\\x=-15,5\end{matrix}\right.\) (vô lí)
Vậy ko tìm dc x thỏa mãn theo yêu cầu