Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\dfrac{2x+4}{x-3}=\dfrac{2x-6+10}{x-3}=2+\dfrac{10}{x-3}\) nguyên khi x-3 là ước của 10 hay
\(x-3\in\left\{-10,-5,-2,-1,1,2,5,10\right\}\) hay
\(x\in\left\{-7,-2,2,4,5,8,13\right\}\)
b. Khi x nguyên thì A lớn nhất khi x-3= 1 hay x= 4.
c. Để A nhỏ nhất thì x -3 =-1 hay x = 2
Nhận xét:
/x-5/ \(\ge0\) với mọi x \(\in\) Z, dấu = xảy ra <=> x=5
/x-5/+2012\(\ge2012\) với mọi x \(\in Z\), dấu = xảy ra <=> x=5
=> 4/(/x-5)+2012)\(\le\) 4/2012=1/503 với mọi x thuộ Z, dấu = xảy ra <=> x=5
Vậy Max B=1/503 <=>x=5
P có GTLN khi \(\frac{4x-1}{3x-5}\)có GTLN
Để \(\frac{4x-1}{3x-5}\)có GTLN \(\Rightarrow\)\(3x-5\)là số nhỏ nhất dương
\(\Rightarrow\)\(3x-5\)=1
3\(x\)=6
\(x=2\)
Vậy a có GTLN = \(\frac{4\cdot3-1}{3\cdot5-1}\)Khi \(x\)=2
Để P lớn nhất thì 3P lớn nhất
\(\Rightarrow3P=\frac{3\left(4x-1\right)}{3x-5}=\frac{12x-3}{3x-5}=\frac{12x-20+17}{3x-5}=\frac{4\left(3x-5\right)+17}{3x-5}=4+\frac{17}{3x-5}\)
Nếu \(3x-5< 0\) thì \(\frac{17}{3x-5}< 0\Rightarrow4+\frac{17}{3x-5}< 4\)
Nếu \(3x-5>0\) thì \(\frac{17}{3x-5}>0\Rightarrow4+\frac{17}{3x-5}>4\)
Nên để 3P lớn nhất thì \(3x-5>0\)
Để 3P lớn nhất thì \(\frac{17}{3x-5}\) lớn nhất hay \(3x-5\) bé nhất và \(3x-5>0\)
\(\Rightarrow3x-5=1\Rightarrow3x=6\Rightarrow x=2\)
\(\text{Đ}k:x\ne\dfrac{1}{3}\\ A=\dfrac{3x+8}{3x-1}=\dfrac{\left(3x-1\right)+9}{3x-1}=1+\dfrac{9}{3x-1}\)
Để A có giá trị lớn nhất thì \(\dfrac{9}{3x-1}\) là lớn nhất
hay \(3x-1\) là nhỏ nhất
⇒ A ko có giá trị nhỏ nhất
ko quay lại drama à nguyễn acc2
ngta bảo tìm nhỏ to cậu tìm nhỏ ?