Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
b, \(\sqrt{x^2-10x+25}=x+3\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+3\)
\(\Leftrightarrow x-5=x+3\Leftrightarrow0\ne8\)( vô nghiệm )
\(a,\sqrt{3-x}+\sqrt{2-x}=1\)
\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)
\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)
\(\Rightarrow2x+2\sqrt{2-x}=0\)
\(\Rightarrow x+\sqrt{2-x}=0\)
\(\Rightarrow2-x=\left(-x\right)^2\)
\(\Rightarrow2-x=x^2\)
\(\Rightarrow2-x^2-x=0\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
Vậy....
Bài làm:
a) \(\sqrt{3}x-\sqrt{27}=\sqrt{343}\)
\(\Leftrightarrow\left(x-3\right)\sqrt{3}=7\sqrt{7}\)
\(\Leftrightarrow x-3=\frac{7\sqrt{21}}{3}\)
\(\Rightarrow x=\frac{9+7\sqrt{21}}{3}\)
b) \(\sqrt{2}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\left(x^2-\sqrt{6}\right)\sqrt{2}=0\)
\(\Leftrightarrow x^2-\sqrt{6}=0\)
\(\Leftrightarrow x^2=\sqrt{6}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\sqrt{6}}\\x=-\sqrt{\sqrt{6}}\end{cases}}\)
a) Bpt luôn đúng với mọi x không âm
b) đk: \(x\le2\)
Có: \(\sqrt{x}>\sqrt{2-x}\Leftrightarrow x>2-x\)
\(\Leftrightarrow2x>2\Leftrightarrow x>1\)
Kết hợp với đk, ta được: \(1< x\le2\)