Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(2-3x\right)^2}{3}-\frac{\left(1+2x\right)^2}{2}=\frac{3}{4}-2\left(x-1\right)\left(x+2\right)+x\left(1+x\right)\)
\(\frac{2^2-12x-3x^2}{3}-\frac{1^2+4x+2x^2}{2}=\frac{3}{4}-\left(x^2+x-2\right)+3x\)
\(\frac{2.\left(4-12x-3x^2\right)}{6}-\frac{3.\left(1+4x+2x^2\right)}{6}=\frac{11}{4}-x^2+2x\)
\(\frac{8-24x-6x^2}{6}-\frac{3+12x+2x^2}{6}=\frac{11}{4}-x^2+2x\)
\(\frac{8-24x-6x^2-3-12x-2x^2}{6}=\frac{11}{4}-x^2+2x\)
\(\frac{5-36x-8x^2}{6}=\frac{11}{4}-x^2+2x\)
Chỗ đây thì mk chịu
\(\Leftrightarrow\dfrac{1}{2}\left(x^2-4x+4\right)-\dfrac{13}{3}\left(x^2+6x+9\right)=\dfrac{1}{4}\left(x^2-3x+2\right)-2\left(9x^2+3x-2\right)\)
\(\Leftrightarrow x^2\cdot\dfrac{1}{2}-2x+2-\dfrac{13}{3}x^2-26x-39=\dfrac{1}{4}x^2-\dfrac{3}{4}x+\dfrac{1}{2}-18x^2-6x+4\)
\(\Leftrightarrow x^2\cdot\dfrac{167}{12}-\dfrac{85}{4}x-\dfrac{83}{2}=0\)
\(\Leftrightarrow167x^2-255x-498=0\)
\(\text{Δ}=\left(-255\right)^2-4\cdot167\cdot\left(-498\right)=397689\)
Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{255-\sqrt{397689}}{334}\\x_2=\dfrac{255+\sqrt{397689}}{334}\end{matrix}\right.\)