\(\sqrt{\dfrac{2x-3}{1-x}}\)xác định (có thể làm theo cách sử dụng bảng xét...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2021

a, Ta có : 

\(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{2x+\sqrt{x}-4\sqrt{x}-2}{\sqrt{x}-2}\)sử dụng tam thức bậc 2 khai triển biểu thức trên tử nhé 

\(=\frac{\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)

\(Q=\frac{\left(\sqrt{x}\right)^3-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}=x-1\)

b, Ta có : \(P=Q\)hay \(2\sqrt{x}+1=x-1\Leftrightarrow-x+2\sqrt{x}+2=0\)

\(\Leftrightarrow x-2\sqrt{x}-2=0\Leftrightarrow x-2\sqrt{x}+1-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-3=0\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)

TH1 : \(\sqrt{x}=1+\sqrt{3}\Leftrightarrow x=\left(1+\sqrt{3}\right)^2=1+2\sqrt{3}+3=4+2\sqrt{3}\)

TH2 : \(\sqrt{x}=1-\sqrt{3}\Leftrightarrow x=\left(1-\sqrt{3}\right)^2=1-2\sqrt{3}+3=4-2\sqrt{3}\)

Vậy \(x=4+2\sqrt{3};x=4-2\sqrt{3}\)thì P = Q 

18 tháng 3 2021

んuリ イ giải pt vô tỉ không xét ĐK là tai hại :))

 \(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{2x-4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-2}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)

\(Q=\frac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\left(x\sqrt{x}-\sqrt{x}\right)+\left(2x-2\right)}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{\left(x-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=x-1\)

Để P = Q thì \(2\sqrt{x}+1=x-1\)( x ≥ 1 ; x ≠ 4 )

<=> \(x-2\sqrt{x}-2=0\)

<=> \(\left(\sqrt{x}-1\right)^2-3=0\)

<=> \(\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)

<=> \(\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=4+2\sqrt{3}\left(tm\right)\\x=4-2\sqrt{3}\left(ktm\right)\end{cases}}\)

Vậy với \(x=4+2\sqrt{3}\)thì P = Q

3 tháng 6 2021

a, \(\sqrt{x^2+12x+40}\)

\(=\sqrt{\left(x+6\right)^2+4}\)

Biểu thức trên xác định \(\Leftrightarrow\left(x+6\right)^2+4\ge0\) mà \(\left(x+6\right)^2\ge0\forall x\Rightarrow\left(x+6\right)^2+4\ge4\forall x\)

Vậy biểu thức trên xác định với mọi x

b, \(\frac{1}{\sqrt{9x^2-6x+1}}\)

\(=\frac{1}{\sqrt{\left(3x-1\right)^2}}\)

Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(3x-1\right)^2\ge0\\\left(3x-1\right)^2\ne0\end{cases}}\)

                                        \(\Leftrightarrow\left(3x-1\right)^2\ne0\)vì (3x-1)2 luôn \(\ge\)0 với mọi x

                                        \(\Leftrightarrow3x-1\ne0\Leftrightarrow3x\ne1\Leftrightarrow x\ne\frac{1}{3}\)

Vậy biểu thức trên xác định khi và chỉ khi \(x\ne\frac{1}{3}\)

3 tháng 6 2021

c, \(\sqrt{\left(4x^2+2x+3\right)\left(3-2x\right)}\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\\\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\end{cases}}\)Biểu thức trên xác định \(\Leftrightarrow\)\(\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\)(1)  hoặc \(\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\)(2)

                                            mà \(4x^2+2x+3=\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}\)luôn \(\ge\frac{11}{4}\)\(\forall x\)

                                       \(\Rightarrow\)(2) không thỏa mãn, (1) thỏa mãn 

Từ (1)\(\Rightarrow3-2x\ge0\)(vì \(4x^2+2x+3\)luôn \(\ge0\forall x\))

           \(\Rightarrow3\ge2x\)

            \(\Rightarrow\frac{3}{2}\ge x\)hay\(x\le\frac{3}{2}\)

Vậy biểu thức trên xác định khi và chỉ khi \(x\le\frac{3}{2}\)

d, \(\sqrt{\frac{2x^2+3x+16}{5-7x}}\)

=\(\frac{\sqrt{\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}}}{\sqrt{5-7x}}\)

Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2\\5-7x>0\end{cases}+\frac{119}{8}\ge0}\)

mà \(\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}\ge\frac{119}{8}\forall x\)

\(\Rightarrow\)Biểu thưc trên xác định \(\Leftrightarrow5-7x>0\)\(\Leftrightarrow5>7x\Leftrightarrow\frac{5}{7}>x\)hay \(x< \frac{5}{7}\)

               

1 tháng 6 2021

a, \(\sqrt{16x^2-25}\)

ĐKXĐ : \(16x^2-25\ge0\Leftrightarrow x^2\ge\frac{25}{16}\Leftrightarrow x\le-\frac{5}{4};x\ge\frac{5}{4}\)

b, \(\sqrt{16-9x^2}\)

ĐKXĐ : \(16-9x^2\ge0\Leftrightarrow x^2\le\frac{9}{16}\Leftrightarrow-\frac{3}{4}\le x\le\frac{3}{4}\)

c, \(\sqrt{\frac{x-1}{x+2}}=\frac{\sqrt{x-1}}{\sqrt{x+2}}\)

ĐKXĐ : \(\sqrt{x+2}\ne0\Leftrightarrow x+2\ne0\Leftrightarrow x\ne-2\)

d, \(\frac{1}{\sqrt{x^2-2x-3}}\)

ĐKXĐ : \(\sqrt{x^2-2x-3}\ne0\Leftrightarrow\sqrt{\left(x-1\right)^2-4}\ne0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)\ne0\Leftrightarrow x\ne-1;3\)

8 tháng 9 2018

Giải

Do \(\sqrt{a}\ge0\Leftrightarrow a\ge0\). Từ đó dễ dàng giải

a) \(\sqrt{2x^2}\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow x\ge0\)

b) Đề sai bởi vì không có căn bậc 2 của số âm

c) \(\sqrt{2x^2+1}\ge0\Leftrightarrow2x^2+1\ge0\Leftrightarrow2x^2\ge-1\)

d) Đề sai vì không có căn bậc 2 của số âm

e) \(\sqrt{2-x^2}\ge0\Leftrightarrow2-x^2\ge0\Leftrightarrow x^2\le2\)

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

27 tháng 5 2017

Căn bậc hai. Căn bậc ba