Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=\dfrac{2x^4-2x^2-3x^3-3x+6x^2-6+7}{x^2-1}\)
\(=2x^2-3x+6+\dfrac{7}{x^2-1}\)
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
A = (2x - 3)(3x + 5) - (x - 1)(6x + 2) + 3 - 5x
= 6x2 + 10x - 9x - 15 - 6x2 - 2x + 6x + 2 + 3 - 5x
= (6x2 - 6x2) + (10x - 9x - 2x + 6x - 5x) - (15 - 2 - 3)
= -10
Vậy A ko phụ thuộc vào giá trị của biến x
a, A = 6x^2+x-15-6x^2+4x+2+3-5x = -10
=> Gía trị của biểu thức A ko phụ thuộc vào giá trị của biến
k mk nha
Bài 4:
c: Ta có: \(\dfrac{6x^3-x^2-23x+a}{2x+3}\)
\(=\dfrac{6x^3+9x^2-10x^2-15x-8x-12+a+12}{2x+3}\)
\(=3x^2-5x-4+\dfrac{a+12}{2x+3}\)
Để phép chia trên là phép chia hết thì a+12=0
hay a=-12
(x+1)(x+3)(x+5)(x+7)+2002
=(x+1)(x+7)(x+3)(x+5)+2004
=(x^2+8x+7)(x^2+8x+15)+2004
đặt x^2+8x+11=t
=> (t-4)(t+4)+2004
=t^2-16+2004
=t^2+1988
=x^2+8x+11+1988
=x^2+8x+1999
(x^2+8x+1999 ):(x^2+8x+1)=1 dư 1998 (chia đa thức )
vậy số dư là 1998
có j ko hiểu thì cứ hỏi nha ^^
Bạn ơi bạn đặt t = x2 + 8x + 11
chứ có phải t2 = x2 + 8x + 11
đâu bạn
Ta có: \(\left(15x-6x+7\right):\left(2x+1\right)=5\)
Áp dụng định lý Bozout, ta có:
\(f\left(\frac{-1}{2}\right)=15\cdot\frac{-1}{2}-6\cdot\frac{-1}{2}+7=\frac{5}{2}\)
Vậy số dư là 2,5
(x+1)(x+3)(x+5)(x+7) + 2004
= ( x2 + 8x + 7 ) ( x2 + 8x + 15 ) + 2004
đặt x2 + 8x + 1 = a
\(\Rightarrow\)( a + 6 ) ( a + 14 ) + 2004
= a2 + 20a + 84 + 2004
= a2 + 20a + 2088
Ta thấy a2 + 20a \(⋮\)x2 + 8x + 1
\(\Rightarrow\)(x+1)(x+3)(x+5)(x+7) + 2004 chia x2 + 8x + 1 dư 2088
Ta có: