K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2022

`\sqrt{[-3]/[(5x-1)^2]}` có nghĩa `<=>[-3]/(5x-1)^2 >= 0`

                     Mà `-3 < 0` và `(5x-1)^2 >= 0 AA x`

  `=>` Không có gtrị nào để căn thức có nghĩa

`\sqrt{7/[(4-3x)^2]}` có nghĩa `<=>7/[(4-3x)^2] >= 0`

                         Mà `7 > 0`

      `=>(4-3x)^2 > 0<=>4-3x \ne 0<=>x \ne 4/3`

`\sqrt{9/[(3x+1)^2]}` có nghĩa `<=>9/[(3x+1)^2] >= 0`

                   Mà `9 > 0`

       `=>(3x+1)^2 > 0<=>3x+1 \ne 0<=>x \ne [-1]/3`

a: ĐKXĐ: (8x^2+3)/(x^2+4)>=0

=>\(x\in R\)

b: ĐKXĐ: -3(x^2+2)>=0

=>x^2+2<=0(vô lý)

d: ĐKXĐ: -x^2-2>2

=>-x^2>2

=>x^2<-2(vô lý)

d: ĐKXĐ: 4(3x+1)>=0

=>3x+1>=0

=>x>=-1/3

29 tháng 6 2023

\(a,\sqrt{\dfrac{8x^2+3}{4+x^2}}\) có nghĩa \(\Leftrightarrow\dfrac{8x^2+3}{4+x^2}\ge0\Leftrightarrow4+x^2\ge0\) (luôn đúng)

Vậy căn thức trên có nghĩa với mọi x.

\(b,\sqrt{-3\left(x^2+2\right)}\) có nghĩa \(\Leftrightarrow-3\left(x^2+2\right)\ge0\Leftrightarrow x^2+2\le0\Leftrightarrow x^2\le-2\) (vô lí)

Vậy không có giá trị x để căn thức có nghĩa.

\(c,\sqrt{4\left(3x+1\right)}\) có nghĩa \(\Leftrightarrow3x+1\ge0\Leftrightarrow3x\ge-1\Leftrightarrow x\ge-\dfrac{1}{3}\) 

Vậy không có giá trị x để căn thức có nghĩa.

\(d,\sqrt{\dfrac{5}{-x^2-2}}\) có nghĩa  \(\Leftrightarrow-x^2-2>0\Leftrightarrow x^2< -2\) (vô lí)

Vậy không có giá trị x để căn thức có nghĩa.

25 tháng 12 2021

Ủa câu này bạn cho bên trong căn lớn hơn 0 thôi, có phân số thì thêm đk mẫu khác 0 thôi ^^

25 tháng 12 2021

nói thì dễ lắm bạn ơi

18 tháng 9 2021

a) \(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

\(=\dfrac{-3\sqrt{x}+3}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}-1}=\dfrac{-3}{\sqrt{x}+3}\)

b) \(D=-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{4}\)

\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow\sqrt{x}< 9\) 

\(\Leftrightarrow0\le x< 81\) và \(x\ne9\)

a) D=\(\left(\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\sqrt{x}.\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\right)\) \(:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(\Leftrightarrow D=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}\) \(.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-3-3\sqrt{x}}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-3.\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-3}{\sqrt{x}+3}\)

b) Để D\(< \dfrac{-1}{4}\) \(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{-1}{4}\) 

\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow9>\sqrt{x}\Leftrightarrow81>x\ge0\)

 

a: \(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}+3}=-\dfrac{6}{\sqrt{x}+3}\)

b: P>=-1/2

=>P+1/2>=0

=>\(\dfrac{-6}{\sqrt{x}+3}+\dfrac{1}{2}>=0\)

=>\(\dfrac{-12+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}>=0\)

=>căn x-9>=0

=>x>=81

c: căn x+3>=3

=>6/căn x+3<=6/3=2

=>-6/căn x+3>=-2

Dấu = xảy ra khi x=0

26 tháng 6 2021

a)đk:`2x-4>=0`

`<=>2x>=4`

`<=>x>=2.`

b)đk:`3/(-2x+1)>=0`

Mà `3>0`

`=>-2x+1>=0`

`<=>1>=2x`

`<=>x<=1/2`

c)`đk:(-3x+5)/(-4)>=0`

`<=>(3x-5)/4>=0`

`<=>3x-5>=0`

`<=>3x>=5`

`<=>x>=5/3`

d)`đk:-5(-2x+6)>=0`

`<=>-2x+6<=0`

`<=>2x-6>=0`

`<=>2x>=6`

`<=>x>=3`

e)`đk:(x^2+2)(x-3)>=0`

Mà `x^2+2>=2>0`

`<=>x-3>=0`

`<=>x>=3`

f)`đk:(x^2+5)/(-x+2)>=0`

Mà `x^2+5>=5>0`

`<=>-x+2>0`

`<=>-x>=-2`

`<=>x<=2`

26 tháng 6 2021

a, ĐKXĐ : \(2x-4\ge0\)

\(\Leftrightarrow x\ge\dfrac{4}{2}=2\)

Vậy ..

b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3}{-2x+1}\ge0\\-2x+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow-2x+1>0\)

\(\Leftrightarrow x< \dfrac{1}{2}\)

Vậy ..

c, ĐKXĐ : \(\dfrac{-3x+5}{-4}\ge0\)

\(\Leftrightarrow-3x+5\le0\)

\(\Leftrightarrow x\ge\dfrac{5}{3}\)

Vậy ...

d, ĐKXĐ : \(-5\left(-2x+6\right)\ge0\)

\(\Leftrightarrow-2x+6\le0\)

\(\Leftrightarrow x\ge-\dfrac{6}{-2}=3\)

Vậy ...

e, ĐKXĐ : \(\left(x^2+2\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow x-3\ge0\)

\(\Leftrightarrow x\ge3\)

Vậy ...

f, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{x^2+5}{-x+2}\ge0\\-x+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow-x+2>0\)

\(\Leftrightarrow x< 2\)

Vậy ...

20 tháng 12 2021

Bài 2: 

a: \(=\sqrt{2}-\dfrac{2}{5}\sqrt{2}+2\sqrt{2}+2\sqrt{2}=\dfrac{23}{5}\sqrt{2}\)

16 tháng 8 2023

1) 

a) \(\sqrt{2x-4}\) có nghĩa khi:

\(2x-4\ge0\)

\(\Leftrightarrow2x\ge4\)

\(\Leftrightarrow x\ge\dfrac{4}{2}\)

\(\Leftrightarrow x\ge2\)

b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi 

\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)

\(\Rightarrow4-x\le0\)

\(\Leftrightarrow x\ge4\)

16 tháng 8 2023

bạn ơi còn ý 2 nx mà

a: 


Sửa đề: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right)\cdot\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right)\)

\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+3}\)

b: P>=1/2

=>P-1/2>=0

=>\(\dfrac{-6}{\sqrt{x}+3}-\dfrac{1}{2}>=0\)

=>\(\dfrac{-12-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>=0\)

=>\(-\sqrt{x}-15>=0\)

=>\(-\sqrt{x}>=15\)

=>căn x<=-15

=>\(x\in\varnothing\)

c: căn x+3>=3

=>6/căn x+3<=6/3=2

=>P>=-2

Dấu = xảy ra khi x=0