K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

tìm x bt :

a, ( 2x + 1 )4 = ( 2x + 1 )6

=>(2x+1)4-(2x+1)6=0

=>(2x+1)4-(2x+1)4.(2x+1)2=0

=>(2x+1)4.[1-(2x+1)2]=0

=>(2x+1)4=0 hoặc 1-(2x+1)2=0

=>2x+1=0 hoặc(2x+1)2=1

=>2x=-1 hoặc(2x+1)2=12

=>x=\(\dfrac{-1}{2}\) hoặc 2x+1=1 =>2x=0 => x=0

Vậy x∈{0;\(\dfrac{-1}{2}\)}

Bài 2: 

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x=z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y\in\left\{1;-1\right\}\end{matrix}\right.\)

23 tháng 2 2015

c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1

TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1 

23 tháng 2 2015

a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0 

3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7

1 tháng 5 2017

Ta có: \(\left(3x-5\right)^{2006}\ge0\)với mọi x

           \(\left(y^2-1\right)^{2008}\ge0\)với mọi y

           \(\left(x-z\right)^{2100}\ge0\) với mọi x,z

\(\Rightarrow\)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)với mọi x

Mà \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Rightarrow\left(3x-5\right)^{2006}=0;\left(y^2-1\right)^{2008}=0;\left(x-y\right)^{2100}=0\)

Xét:

\(\left(3x-5\right)^{2006}=0\hept{\begin{cases}3x-5=0\\3x=5\\x=\frac{5}{3}\end{cases}}\)

Xét:

\(\left(y^2-1\right)^{2008}=0\hept{\begin{cases}y^2-1=0\\y^2=1\\y=1hoac-1\end{cases}}\)

Xét:

\(\left(x-z\right)^{2100}=0\hept{\begin{cases}x-z=0\\\frac{5}{3}-z=0\\z=\frac{5}{3}\end{cases}}\)

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

1 tháng 5 2017

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=z=\frac{5}{3}\\y=1\end{cases}}\)

12 tháng 2 2016

=>3x-5=0 và y2-1=0 và x-z=0

=>x=5/3 và y=-1 hoặc y=1 và z=5/3

1) Tìm  x, y, za) (x-3)(x-7)< 0                                          b) (x-8)x-1 - (x-8)x+21 = 0c) |x-2|-|2x+3|-x= 2                                    d) |x-7|+ 2x+5=6e) (3x-5)2006 + (y2 -1)2008 + (x-z)2100 =0      g) (2x-1)2008 + (y-2/5)2008 + |x+y-z|=02) Tìm số nguyên x, y, z biết:a) 42- 3|y-3| = 4(2012-x)4                                                      b) xy-2x+3y=11c) 25-y2 = 8(x-2009)2                                                            d) x2 +x-3x-3y+7=0e)...
Đọc tiếp

1) Tìm  x, y, z

a) (x-3)(x-7)< 0                                          b) (x-8)x-1 - (x-8)x+21 = 0

c) |x-2|-|2x+3|-x= 2                                    d) |x-7|+ 2x+5=6

e) (3x-5)2006 + (y-1)2008 + (x-z)2100 =0      g) (2x-1)2008 + (y-2/5)2008 + |x+y-z|=0

2) Tìm số nguyên x, y, z biết:

a) 42- 3|y-3| = 4(2012-x)4                                                      b) xy-2x+3y=11

c) 25-y= 8(x-2009)2                                                            d) x+x-3x-3y+7=0

e) 2xy+5x=3y+7=0                                                               g) x-2y=1

3) Cho P= |3x-3|+2x+1. Rút gọn P

4)Tìm GTLN của các biểu thức

a) A= 8-|2x+3|

b) B= 11-(2x-1)2 - |y+3|

c) C= \(\frac{2009}{\left|2x+1\right|+2010}\)

 

2
28 tháng 5 2015

a)(x-3)(x-7)<0

x-3<0 hoặc x-7<0

x<3    hoặc x <7

Vậy x<3 hoặc x<7

b)(x-8)x-1+(x-8)x+21=0

(x-8)x-1+(x-8)x+1.(x-8)20=0

(x-8)x-1.(1+(x-8)20)=0

(x-8)x-1=0 hoặc 1+(x-8)20=0

x-8=0        hoặc   (x-8)20   =-1(vô lí)

x=8

Vậy x=8

28 tháng 5 2015

nguyentuantai có giải đâu chứ!!! quá đáng

17 tháng 8 2019

Vì \(\left(3x-5\right)^{2006}\ge0\) ; \(\left(y^2-1\right)^{2008}\ge0\) ; \(\left(x-z\right)^{2100}\ge0\)

\(\Rightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y^2=1\\z=\frac{5}{3}\end{cases}}\)<=> x = z = 5/3 và y = 1 hoặc y = -1

Vậy....

17 tháng 8 2019

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

Ta có:

\(\hept{\begin{cases}\left(3x-5\right)^{2006}\ge0\\\left(y^2-1\right)^{2008}\ge0\\\left(x-z\right)^{2100}\ge0\end{cases}}\)

\(\Leftrightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

Dấu "=" xảy ra:

\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)

Vây khi x = \(\frac{5}{3}\); y = \(\pm1\), z = \(\frac{5}{3}\)thì biểu thức trên có giá trị bằng 0.

Chúc em học tốt nhé!!!