Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(<=>2x^2-5x+3=0\)
<=>\(2x^2-2x-3x+3=0\)
\(<=>2x(x-1)-3(x-1)=0\)
\(<=>(2x-3)(x-1)=0\)
th1 \(2x-3=0<=>x=3/2\)
th2 \(X-1=0<=>x=1\)
pt có tập nghiệm S={3/2;1}
\(2x^3+3x^2-8x+3=0\\ \Rightarrow\left(2x^3-2x^2\right)+\left(5x^2-5x\right)-\left(3x-3\right)=0\\ \Rightarrow2x^2\left(x-1\right)+5x\left(x-1\right)-3\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(2x^2+5x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\2x^2+5x-3=0\end{matrix}\right.\)
\(x-1=0\\ \Rightarrow x=1\)
\(2x^2+5x-3=0\\ \Rightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\\ \Rightarrow2x\left(x+3\right)-\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-3;\dfrac{1}{2};1\right\}\)
= \(x^4-2x^3-6x^3+12x^2-x^2+2x+6x-12\)
= \(x^3\left(x-2\right)-6x^2\left(x-2\right)-x\left(x-2\right)+6\left(x-2\right)\)
= \(\left(x-2\right)\left(x^3-6x^2-x+6\right)\)
= \(\left(x-2\right)\left(x^2\left(x-6\right)-\left(x-6\right)\right)\)
= \(\left(x-2\right)\left(x-6\right)\left(x-1\right)\left(x+1\right)\)
x4 - 8x3 + 11x2 + 8x - 12
= (x3 - 7x2 + 4x + 12)(x - 1)
= (x3 - 8x + 12)(x + 1)(x - 1)
= (x - 6)(x - 2)(x + 1)(x - 1)
Ta có:
\(\left(x-6\right)\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
Chúc bạn học tốt
x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0
⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)
Vậy pt vô nghiệm
*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm
Ta có: \(x^2-4x+7=0\)
\(\Leftrightarrow x^2-4x+4+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3=0\)
mà \(\left(x-2\right)^2+3\ge3>0\forall x\)
nên \(x\in\varnothing\)(đpcm)
bn nhờ bn này giúp nek
bn ấy hc giỏi toán hơn mk
https://olm.vn/thanhvien/cuoidoi09081002
xl bn nha
mẫu mấy câu:
\(a,x^4y^4+4\)
\(=\left(x^2y^2+2\right)^2-4x^2y^2\)(cái này hok lâu sẽ tự hiêur)
\(=\left(x^2y^2-2xy+2\right)\left(x^2y^2+2xy+2\right)\)
\(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow x=\left\{1;-1;6;2\right\}\)
\(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)
\(\Leftrightarrow\left(x^4-x^3\right)-\left(7x^3-7x^2\right)+\left(4x^2-4x\right)+\left(12x-12\right)=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\)x - 1 =0 ; x + 1 = 0 ; x - 2 =0 hoặc x - 6 = 0
\(\Leftrightarrow\)x = 1 ; x = -1 ; x = 2 ; x=6