Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-4\right)\left(x^2-10\right)=72\)
<=> \(x^4-14x^2+40-72=0\)
<=> \(x^4-14x^2-32=0\)
<=> \(\left(x^2-16\right)\left(x^2+2\right)=0\)
<=> \(\left[\begin{array}{nghiempt}x^2-16=0\\x^2+2=0\end{array}\right.\)=> x=\(\pm\)4
vậy tập nghiệm S={4;-4}
\(\left(x^2-4\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-10x^2-4x^2+40=72\)
\(\Leftrightarrow x^4-14x^2+40-72=0\)
\(\Leftrightarrow x^4-14x^2-32=0\)
\(\Leftrightarrow x^4+2x^2-16x^2-32=0\)
\(\Leftrightarrow x^2\left(x^2+2\right)-16\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-4^2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x-4\right)\left(x+4\right)=0\left(1\right)\)
\(Có:x^2\ge0\)\(\text{ với mọi x}\)
\(\Rightarrow x^2+2\ge0+2=2\ne0\text{ với mọi x}\)
\(\left(1\right)\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x+4=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-4\end{array}\right.\)
\(\text{Vậy }x=\pm4\)
Đặt Q là thương của phép chia . Vì đây là phép chia hết nên ta có phương trình
5x4+5x3+x2+11x+a = (x2+x+b)Q . Mà vế trái là đa thức bậc 4 nên khi chia cho đa thức bậc 2 thì thương có dạng Q = mx2+nx+h
( với m,n,h là hệ số của đa thức )
=> 5x4+5x3+x2+11x+a = (x2+x+b)(mx2+nx+h)
<=>5x4+5x3+x2+11x+a = mx4+ nx3 + hx2 + mx3 + nx2 + hx + bmx2 + bnx + bh
= mx4 + (m+n)x3 + (h+n+bm)x2 + (h+bn)x + bh
Mà theo nguyên tắc hai vế bằng nhau thì hệ số của bậc nào bằng hệ số bậc cùng bậc bên vế kia .
=> m = 5
m+n = 5 => n = 0
h+bn = 11 => h = 11
h+n+bm = 1 => b = -2
bh = a = -22
Vậy a = -22 ; b = -2 ; Q = 5x2+11
x4-30x2+31x-30 = 0
<=> x4 + ( x3 - x3 ) + ( x2 - x2 - 30x2 ) + ( 30x + x ) -30 = 0
<=> ( x4 + x3 - 30x2 ) + ( -x3 - x2 + 30x ) + ( x2 + x - 30 ) =0
<=> x2.( x2 + x - 30 ) - x.( x2 + x - 30 ) + ( x2 + x - 30 ) = 0
<=> ( x2 + x - 30 )( x2 - x + 1 ) = 0
<=> ( x2 + x - 30 )( x - 5 )( x + 6 ) = 0
Vì x2 + x - 30 = x2 + x + \(\frac{1}{4}\) - \(\frac{121}{4}\) = ( x + \(\frac{1}{2}\) )2 - \(\frac{121}{4}\) \(\ge\)- \(\frac{121}{4}\)
=> x - 5 = 0 hoặc x + 6 = 0
=> x = 5 hoặc x = -6
Vậy tập nghiệm S = { -6 ; 5 }
a)x+x2-x3-x4=0
<=>x(x+1)-x3(x+1)=0
<=>x(x+1)(1-x2)=0
<=>x(x+1)(x+1)(x-1)=0
<=>x(x+1)2(x-1)=0
<=>x=0
hoặc (x+1)2=0<=>x=-1
hoặc x-1=0<=>x=1
b)sửa đề 1 chút!!!
2x3+3x2+2x+3=0
<=>x2(2x+3)+(2x+3)=0
<=>(2x+3)(x2+1)=0
<=>2x+3=0(do x2+1>0 với mọi x)
<=>2x=-3
<=>x=-1,5
c)x2-x-12=0
<=>(x2-4x)+(3x-12)=0
<=>(x(x-4)+3(x-4)=0
<=>(x-4)(x+3)=0
<=>x-4=0<=>x=4
Hoặc x+3=0<=>x=-3
\(x^4-2x^2+8=x^4+2x^2-4x^2+8=\left(x^2-4\right)\left(x^2+2\right)=\left(x-2\right)\left(x+2\right)\left(x^2+2\right)\)\(\left(x^4-2x^2-8\right):\left(x-2\right)=\left(x+2\right)\left(x^2+2\right)=0\)
\(\Rightarrow x=-2\)
x^2-x+1/4=0
x^2-2x.1/2+(1/2)^2-(1/2)^2+1/4=0
(x-1/2)^2=0
x-1/2=0
x=1/2
(x2-4)(x2-10)=72
=>x4-14x2+40=72
=>x4-14x2-32=0
=>(x-4)(x3+4x2+2x+8)=0
=>(x-4)(x+4)(x2+2)=0
=> (x-4) = 0 hoặc (x+4)=0 hoặc (x2+2)=0
=> x = 4 hoặc x=-4
x=4 hoặc x=-4