K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

bạn vào câu hỏi tương tự tham khảo nha

13 tháng 8 2019

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)

\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)

\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)

\(\Rightarrow x=\frac{23}{11}\)

12 tháng 1 2017

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Leftrightarrow\frac{11}{45}x=\frac{23}{45}\)

\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)

\(\Rightarrow x=\frac{23}{11}\)

5 tháng 4 2017

đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)

\(2A=\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)

\(A=\frac{22}{45}:2=\frac{11}{45}\)

thay A vào ta được

\(\frac{11}{45}.x=\frac{23}{45}\)

        \(x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)

25 tháng 2 2016

=>(2/1.2.3+2/2.3.4+....+2/8.9.10).x=22/45

=>(1/1.2-1/2.3+1/2.3-1/3.4+....+1/8.9-1/9.10).x=22/45

=>(1/1.2-1/9.10).x=22/45

=>22/45.x=44/45

=>x=2

25 tháng 2 2016

4+2^2+2^3+....+2^20=2^n

=>2^2+2^2+2^3+....+2^20=2^n

đặt 2^2+2^3+....+2^20

=>2A-A=2^21-2^2

khi đó A=2^2+2^21-2^2=2^21=2^n

=>n=21

22 tháng 5 2017

Ta có:

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\Rightarrow2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\right):2.x=\frac{23}{45}\)

\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right):2.x=\frac{23}{45}\)

\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right):2.x=\frac{23}{45}\)

\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right):2.x=\frac{23}{45}\)

\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)

\(\Rightarrow x=\frac{23}{45}\div\frac{11}{45}=\frac{23}{11}\)

Vậy \(x=\frac{23}{11}\)

23 tháng 5 2017

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).\frac{1}{2}.x=\frac{23}{45}\)

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{8.9}+\frac{1}{9.10}\right).\frac{1}{2}.x=\frac{23}{45}\)

\(\left(\frac{1}{2}+\frac{1}{6}+....+\frac{1}{72}+\frac{1}{90}\right).\frac{1}{2}.x=\frac{23}{45}\)

\(\left(\frac{1}{2}-\frac{1}{90}\right).\frac{1}{2}.x=\frac{23}{45}\)

\(\frac{22}{45}.\frac{1}{2}x=\frac{23}{45}\)

\(\frac{11}{45}.x=\frac{23}{45}\)

 \(x=\frac{23}{45}\div\frac{11}{45}\)

\(x=\frac{23}{11}\)

=> \(x=\frac{23}{11}\)

2 tháng 8 2015

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\Rightarrow2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{46}{45}\)

\(=\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x\)

\(=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right).x\)

\(=\left(\frac{1}{2}-\frac{1}{90}\right).x=\left(\frac{45}{90}-\frac{1}{90}\right)x=\frac{44}{90}.x=\frac{22x}{45}=\frac{46}{45}\)

=> 22x=46

=> x=\(46:22=\frac{23}{11}\)

24 tháng 1 2016

x = 2 nha bạn !!!

23 tháng 2 2020

\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)+x=\frac{23}{45}\)

Cho \(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\)

Ta có công thức sau: \(\frac{1}{n\cdot\left(n+1\right)}+\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}=\frac{2}{n\cdot\left(n+1\right)\left(n+1\right)}\)

\(\Rightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{8\cdot9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{9\cdot10}=\frac{22}{45}\)

\(\Rightarrow A=\frac{22}{45}:2=\frac{11}{45}\)

Thay vào phép tính trên ta được:

\(\frac{11}{45}\cdot x=\frac{23}{45}\\ x=\frac{23}{45}:\frac{11}{45}\\ x=\frac{23}{11}\)

Vậy \(x=\frac{23}{11}\)