K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)

\(\Rightarrow\frac{7^x.7^2+7^x.7^1+7^x}{57}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}\)

\(\Rightarrow\frac{7^x.\left(7^2+7+1\right)}{57}=\frac{5^{2x}.\left(1+5+5^3\right)}{131}\)

\(\Rightarrow\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)

\(\Rightarrow7^x=5^{2x}\)

Bạn tự làm phần còn lại nhé

24 tháng 7 2017

d, \(=>\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4.\)

=> \(2x+7=4\) 

=> 2x= -3

=> x=-3/2     . Vậy x=-3/2

e, => \(\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^2}{131}.\)

=> \(\frac{7^x\left(7^2+7+1\right)}{57}=\frac{5^{2x}\left(1+5+5^2\right)}{131}\)

= > \(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)

=> \(7^x=5^{2x}\)

Đến đoạn này là mik nghĩ không ra nhé

24 tháng 7 2017

Cô làm tiếp giúp Linh Đan:

\(7^x=5^{2x}\Rightarrow7^x=25^x\Rightarrow\frac{7^x}{25^x}=1\Rightarrow\left(\frac{7}{25}\right)^x=1\Rightarrow x=0\)

30 tháng 12 2018

ai giải giúp mình bài này với

13 tháng 12 2022

\(\Leftrightarrow\dfrac{7^x\left(7^2+7+1\right)}{57}=\dfrac{5^{2x}\left(1+5+125\right)}{131}\)

=>7^x=5^2x

=>x=0

a: \(\Leftrightarrow2x+7=-4\)

=>2x=-11

hay x=-11/2

b: \(\Leftrightarrow\dfrac{7^x\cdot49+7^x\cdot7+7^x}{57}=\dfrac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)

\(\Leftrightarrow7^x=5^{2x}\)

=>x=0

23 tháng 7 2017

a) \(\left(x-4\right)^2=\left(x-4\right)^4\)

\(\Rightarrow\left(x-4\right)^2-\left(x-4^4\right)=0\)

\(\Rightarrow\left(x-4\right)^2.\left[1-\left(x-4\right)^2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\1-\left(x-4\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\\left(x-4\right)^2=1^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-4=1\\x-4=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\\x=3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

d,

\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)

e,

\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)

\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)

\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)

Vậy không tồn tại $x$ thỏa mãn đề bài.

f, 

\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)

\(\Leftrightarrow 6x-3=10+6x\)

\(\Leftrightarrow 13=0\) (vô lý)

Vậy không tồn tại $x$ thỏa mãn đề bài.

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

a,

$0-|x+1|=5$

$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)

Do đó không tồn tại $x$ thỏa mãn điều kiện đề.

b,

\(2-|\frac{3}{4}-x|=\frac{7}{12}\)

\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)

c, 

\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)

\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)