K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}=\frac{1}{x}\)

\(\Rightarrow1-\frac{1}{2005}=\frac{1}{x}\)

\(\Rightarrow\frac{2004}{2005}=\frac{1}{x}\)

tới đây tự làm nhé

27 tháng 3 2016

Nhưng sao suy ra x đc vậy pạn

19 tháng 3 2019

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2003.2005}\right)\)

=\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2003}-\frac{1}{2005}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{2005}\right)=\frac{1}{2}.\frac{2004}{2005}=\frac{1002}{2005}\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}=\)

\(=\frac{2}{2.1.3}+\frac{2}{2.3.5}+\frac{2}{2.5.7}+....+\frac{2}{2.2003.2005}\)

\(=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}.\frac{2004}{2005}\)

\(=\frac{1002}{2005}\)

Chúc bạn học tốt nha!

8 tháng 3 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\)

\(2A=2.\left(\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\right)\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(2A=1-\frac{1}{2005}\)

\(2A=\frac{2004}{2005}\)

\(A=\frac{2004}{2005}:2\)

\(A=\frac{1002}{2005}\)

Ủng hộ tk Đúng nha mọi người !!! ^^ 

8 tháng 3 2017

Đặt B = \(\frac{1}{1.3}\)\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\Rightarrow2B=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\right)\)\(\Rightarrow2B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2003.2005}\Rightarrow2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(\Rightarrow2B=\frac{1}{3}-\frac{1}{2005}=\frac{2012}{6015}\Rightarrow B=\frac{2012}{6015}:2=\frac{1001}{6015}\)

17 tháng 3 2018

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{19\cdot21}-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{19\cdot21}\right)-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\left(1-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\cdot\frac{20}{21}-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{10}{21}-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{x}{14}=\frac{10}{21}-\frac{2}{-7}\)

\(\frac{x}{14}=\frac{16}{21}\)

\(\Rightarrow x\cdot=21=14\cdot16\)

\(\Rightarrow x\cdot21=224\)

\(\Rightarrow x=\frac{224}{21}\)

26 tháng 3 2018

a)1/1x2+1/2x3+....+1/2003x2004

=1-1/2+1/2-1/3+...+1/2003+1/2004

=1-1/2004

=2004/2004-1/2004

=2003/2004

b)1/1x3+1/3x5+...+1/2003x2005

=1-1/3+1/3-1/5+....+1/2003+1/2005

=1-1/2005

=2005/2005-1/2005

=2004/2005

26 tháng 1 2019

2004/2005

8 tháng 4 2016

bạn nào giải giúp mình với

nếu đúng thì mình sẽ ***

8 tháng 4 2016

=1/2*(1-1/3+1/3-1/5+....+1/x+1/x+2)

=1/2*(1-1/x+2)

=>1/2*x+1/x+2=20/21

Đến đó đưa về giống tìm x nha

25 tháng 2 2017

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)

\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)

\(\frac{1}{x}=\frac{50}{101}\)

\(x=1:\frac{50}{101}\)

\(x=\frac{101}{50}\)

Vậy \(x=\frac{101}{50}\)

6 tháng 3 2016

Ta có:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2003.2004}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}=\frac{2003}{2004}\)

b,

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\right).\frac{1}{2}\)

\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right).\frac{1}{2}\)

\(=\left(1-\frac{1}{2005}\right).\frac{1}{2}=\frac{2004}{2005}.\frac{1}{2}=\frac{1002}{2005}\)

Nhớ nha bạn

3 tháng 3 2020

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2003\cdot2004}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}=\frac{2003}{2004}\)

b) Đặt A=\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2003\cdot2005}\)

\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{2}{2003\cdot2005}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(2A=1-\frac{1}{2005}\)

\(2A=\frac{2004}{2005}\)

\(A=\frac{2004}{2005}:2=\frac{2004}{2005}\cdot\frac{1}{2}=\frac{1002}{2005}\)

3 tháng 3 2020

a)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)

\(=\frac{1}{1}-\frac{1}{2004}\)

\(\Rightarrow=\frac{2003}{2004}\)

b)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003+2005}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(=\frac{1}{1}-\frac{1}{2005}\)

\(\Rightarrow=\frac{2004}{2005}\)

13 tháng 8 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow20\left(x+2\right)=41\)

\(\Leftrightarrow x-2=\frac{41}{20}\)

\(\Leftrightarrow x=\frac{41}{20}+2\)

\(\Leftrightarrow x=\frac{81}{20}\)

13 tháng 8 2019

\(\frac{1}{1.3}+...+\frac{1}{a\left(a+2\right)}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{a\left(a+2\right)}\right)=\frac{1}{2}\left(1-\frac{1}{3}+....-\frac{1}{a+2}\right)\) 

\(=\frac{1}{2}\left(1-\frac{1}{a+2}\right)=\frac{20}{41}\Rightarrow a+2=41\Leftrightarrow a=39\)