K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
28 tháng 7 2021

TH1: \(x\le-1\)

ta có phương trình \(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow-x-1-2x+5-x+9=10\)

\(\Leftrightarrow-4x=-3\Leftrightarrow x=\frac{3}{4}\left(\text{loại}\right)\)

TH2: \(-1< x\le\frac{5}{2}\) thì

\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1-2x+5-x+9=10\)

\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(tm\right)\)

Th3: \(\frac{5}{2}< x\le9\) thì

\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5-x+9=10\)

\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(\text{loại}\right)\)

th4:\(x>9\)thì 

\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5+x-9=10\)

\(\Leftrightarrow4x=23\Leftrightarrow x=\frac{23}{4}\left(\text{loại}\right)\) 

Vậy x=5/2 

NM
29 tháng 7 2021

a. ta có :

\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm

b.ta có 

\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm

Ta có : \(\left|x-1\right|+\left|x+5\right|+\left|2x-7\right|\)

\(=\left|x-1\right|+\left|x+5\right|+\left|7-2x\right|\)

\(\ge\left|x-1+x+5+7-2x\right|\)

\(=\left|11\right|=11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(7-2x\right)\ge0\)

Lập bảng xét dấu : 

                                                               \(-5\)           \(1\)           \(\frac{7}{2}\)

                                      \(x\)                      |                   |                  |     

                                \(x-1\)                   |    \(-\)      \(0\)  \(-\)    |  \(+\)

                                \(x+5\)                 \(0\)\(-\)       |      \(+\)    |  \(+\)

                                \(7-2x\)                |    \(+\)       |     \(+\)   \(0\)  \(-\)

  \(\left(x-1\right)\left(x+5\right)\left(7-2x\right)\)   \(0\)   \(+\)   \(0\) \(-\)   \(0\) \(-\)

Vậy \(-5\le x\le1\)

Bài này hơi nâng cao nên phải sử dụng kiến thức ngoài để giải ngắn gọn hơn.

Em có thể lên mạng để tìm hiểu thêm về lập bảng xét dấu

DD
22 tháng 7 2021

d) \(\left|x-1\right|+\left|x-5\right|+\left|2x+5\right|\)

\(=\left|1-x\right|+\left|5-x\right|+\left|2x+5\right|\)

\(\ge\left|1-x+5-x\right|+\left|2x+5\right|\)

\(\ge\left|6-2x+2x+5\right|=11\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(1-x\right)\left(5-x\right)\ge0\\\left(6-2x\right)\left(2x+5\right)\ge0\end{cases}}\Leftrightarrow-\frac{5}{2}\le x\le1\).

e) \(\left|x+2\right|+\left|x-1\right|+\left|x-4\right|+\left|x+5\right|=12\)

\(\Leftrightarrow\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|=12\)

Có \(\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|\ge\left|x+2+1-x\right|+\left|4-x+x+5\right|=3+9=12\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x+2\right)\left(1-x\right)\ge0\\\left(4-x\right)\left(x+5\right)\ge0\end{cases}}\Leftrightarrow-2\le x\le1\).

f) \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|3x-10\right|\)

\(\ge\left|x-1+x-2\right|+\left|3-x+3x-10\right|\)

\(=\left|2x-3\right|+\left|2x-7\right|\)

\(\ge\left|2x-3+7-2x\right|=4\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x-1\right)\left(x-2\right)\ge0\\\left(3-x\right)\left(3x-10\right)\ge0\\\left(2x-3\right)\left(7-2x\right)\ge0\end{cases}}\Leftrightarrow3\le x\le\frac{10}{3}\).