K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

\(A=\frac{3}{x-1}\)

để A là số nguyên thì \(3⋮\left(x-1\right)\)

\(\Rightarrow x-1\in\)ước của 3

mà ước của 3 =\(\left\{\pm1;\pm3\right\}\)

tiếp theo bn lập bảng giá trị rồi kết luận là xog nhé.

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

 a) \(1\frac{2}{7} = 1 + \frac{2}{7} = \frac{9}{2}\)

\(\begin{array}{l}x:1\frac{2}{7} =  - 3,5\\x:\frac{9}{7} =  - \frac{7}{2}\\x =  - \frac{7}{2}.\frac{9}{7}\\x =  - \frac{9}{2}\end{array}\)

b) \(0,4.x - \frac{1}{5}.x = \frac{3}{4}\)

\(\begin{array}{l}\frac{2}{5}.x - \frac{1}{5}.x = \frac{3}{4}\\\left( {\frac{2}{5} - \frac{1}{5}} \right).x = \frac{3}{4}\\\frac{1}{5}.x = \frac{3}{4}\\x = \frac{3}{4}:\frac{1}{5}\\x = \frac{3}{4}.5\\x = \frac{{15}}{4}\end{array}\)

11 tháng 4 2017

Gọi d là ƯCLN của 12n+1 và 30n+2

=> 12n+1 chia hết cho d. 30n+2 chia hết cho d

=> (12n+1) - (30n+2) chia hết cho d

=.> 5(12n+1) - 2(30n+2) chia hết cho d

=> 1 chia hết cho d

   Ta có d C Ư(1) = [-1;1]

Vây phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản

11 tháng 4 2017

Lộn bài rủi

12 tháng 5 2017

Bài giải:

a, \(11.xx-66=4.x+11\)

\(11x^2-66=4.x+11\)

\(11x^2-66-4.x-11=0\)

\(11x^2-77-4x=0\)

\(11x^2-4x-77=0\)

\(x=\frac{-\left(-4\right)+\sqrt{\left(-4\right)^2-4.11.\left(-77\right)}}{2.11}\)

\(x=\frac{4+\sqrt{16}+3388}{22}\)

\(x=\frac{4+\sqrt{3404}}{22}\)

\(x=\frac{4+2\sqrt{851}}{22}\)

\(x=\frac{2-\sqrt{851}}{11}\)

\(\Rightarrow\)Có hai trường hợp: \(x_1=\frac{2-\sqrt{851}}{11};x_2=\frac{2+\sqrt{851}}{11}\)

Tớ bận rồi, cậu coi câu trên đã nhé ! Tớ xin lỗi, khi nào tớ sẽ làm tiếp =)) 

12 tháng 5 2017

dấu trừ đầu tiên các bạn thay thành số 4 hộ mik nhé

1 tháng 6 2017

Bài 1: 

\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\) 

\(=\frac{1}{\frac{1}{2}}+3\)  \(=2+3\) \(=5\)

                                                  Vậy B=5

Bài 2:

a) x3 - 36x = 0  

=>  x(x2-36)=0

=>  x(x2+6x-6x-36)=0 

=> x[x(x+6)-6(x+6) ]=0

=> x(x+6)(x-6)=0

\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)

 \(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)

                                  Vậy x=0; x=-6; x=6

b)  (x - y = 4 => x=4+y)

 x−3y−2 =32  

=>2(x-3) = 3(y-2)

=>2x-6= 3y-6

=>2x-3y=0

=>2(4+y)-3y=0

=>8+2y-3y=0

=>8-y=0

=>y=8 (thỏa mãn)

Do đó x=4+y=4+8=12 (thỏa mãn)

         Vậy x=12 và y =8

1 tháng 6 2017

B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4  1/5 - 1/8 

B= 1/ 1/2 + 3

B= 2+3

B=5

B2:

a) x^3 - 36x = 0

x(x^2 - 36) = 0

=> x=0  hoặc x^2-36=0

=> x= 0 hoặc x^2=36

=> x=0 hoặc x= +- 6

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

d,

\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)

e,

\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)

\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)

\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)

Vậy không tồn tại $x$ thỏa mãn đề bài.

f, 

\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)

\(\Leftrightarrow 6x-3=10+6x\)

\(\Leftrightarrow 13=0\) (vô lý)

Vậy không tồn tại $x$ thỏa mãn đề bài.

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

a,

$0-|x+1|=5$

$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)

Do đó không tồn tại $x$ thỏa mãn điều kiện đề.

b,

\(2-|\frac{3}{4}-x|=\frac{7}{12}\)

\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)

c, 

\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)

\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)