Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
a/ có \(f\left(-2\right)=4.\left(-2\right)^2-9=7\)
\(f\left(\frac{-1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-9=-8\)
b/ \(f\left(x\right)=-1\)
<=> \(4x^2-9=1\)
<=> \(4x^2=10\)
<=> \(x^2=\frac{5}{2}\)
<=> \(x=\sqrt{\frac{5}{2}}\left(h\right)x=-\sqrt{\frac{5}{2}}\)
chúc bạn học tốt
a/ \(\left|x-3\right|=x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x+1\\x-3=-x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-x=1+3\\x+x=-1+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=4\left(loại\right)\\2x=2\end{matrix}\right.\) \(\Leftrightarrow x=1\)
Vậy ...
b/ \(\left|x-2\right|=2x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2x+3\\x-2=-2x-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x-x=-2-3\\x+2x=-3+2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy ,..
Ta có: \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau và \(x^2-y^2=1\), ta được:
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{25}{9}\Rightarrow x=\pm\frac{5}{3}\\y^2=\frac{16}{9}\Rightarrow y=\pm\frac{4}{3}\end{cases}}\)
Thay vào điều kiện bài toán ta được 2 cặp số: \(\left(x;y\right)=\left(\frac{5}{3};\frac{4}{3}\right);\left(-\frac{5}{3};-\frac{4}{3}\right)\)
Vậy: ......
a) 5x.(x+3/4) = 0
=> x = 0
x+3/4 = 0 => x = -3/4
b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)
\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)
\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)
\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)
\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)
\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
=> x + 2017 = 0
x = -2017
a) để 2x - 3 > 0
=> 2x > 3
x > 3/2
b) 13-5x < 0
=> 5x < 13
x < 13/5
c) \(\frac{x+3}{2x-1}>0\)
=> x + 3 > 0
x > -3
d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)
Để x+7/x+3 < 1
=> 1 + 4/x+3 < 1
=> 4/x+3 < 0
=> không tìm được x thỏa mãn điều kiện
Bài 4:
b: Ta có: \(2x\left(x-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)