Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left|\frac{1}{4}+x\right|=\frac{5}{6}\)
=> Có hai trường hợp
TH1: \(\frac{1}{4}+x=\frac{5}{6}\) TH2: \(\frac{1}{4}+x=-\frac{5}{6}\)
<=> \(x=\frac{5}{6}-\frac{1}{4}\) <=> \(x=-\frac{5}{6}-\frac{1}{4}\)
<=> \(x=\frac{10}{12}-\frac{3}{12}\) <=> \(x=-\left(\frac{10}{12}+\frac{3}{12}\right)\)
<=> \(x=\frac{7}{12}\) <=> \(x=-1\frac{1}{12}\)
Vậy: \(x=\frac{7}{12}\) hoặc \(x=-1\frac{1}{12}\)
b) \(A\left(x\right)=5x^2-3x-16\)
Thay \(x=-2\) vào đa thức A(x), ta có:
\(A\left(-2\right)=5\cdot\left(-2\right)^2-3\cdot\left(-2\right)-16\)
\(A\left(-2\right)=5\cdot4-3\cdot\left(-2\right)-16\)
\(A\left(-2\right)=20+6-16\)
\(A\left(-2\right)=10\)
Vậy giá trị của đa thức A(x) tại x =-2 là 10
c) \(A=4x^2y^2\left(-2x^3y^2\right)\)
\(A=\left[4\cdot\left(-2\right)\right]\left(x^2\cdot x^3\right)\left(y^2\cdot y^2\right)\)
\(A=\left(-8\right)x^5y^4\)
Đơn thức A có:
- Hệ số là: -8
- Phần biến là: \(x^5y^4\)
- Bậc là: 9
a)
1/4+x=5/6 hoặc -5/6
1/4+x=5/6 suy ra x=7/12
1/4+x=-5/6 suy ra x=-13/12
b) thay x=-2 vào
suy ra A=5.(-2)2-3.(-2)-16
=10
c) A=-8x5y4. Hệ số -8. Biến x5y4. Bậc 9
Bài dễ sao ko động não tí đi
1 ) \(\frac{9x+9y}{10a-10b}=\frac{9\left(x+y\right)}{10\left(a-b\right)}=\frac{9}{10}.\frac{x+y}{a-b}=\frac{9}{10}.\frac{2}{3}=\frac{3}{5}\)
2 ) \(\left(-3x-y\right)=10\Rightarrow3x+y=-10\)
\(\Rightarrow2\left(3x+y\right)=2.\left(-10\right)\)
\(\Rightarrow6x+2y=-20\)
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy số phần tử của tập hợp A là 2
\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)
\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)
\(\Leftrightarrow7x-7=6x+30\)
\(\Leftrightarrow7x-6x=7+30\)
\(\Leftrightarrow x=37\)
Vậy nghiệm của phương trình là x = 37