Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) <=> \(2x^2-8x+3x-12+x^2-7x+10=3x^2-5x-12x+20\)
<=> \(2x^2-8x+3x-12+x^2-7x+10-3x^2+5x+12x-20=0\)
<=> \(5x-22=0\)
<=> \(5x=22\)
<=> \(x=\frac{22}{5}\)
b) <=> \(24x^2-9x+16x-6-4x^2-7x-16x-28=10x^2+5x-2x-1\)
<=> \(24x^2-9x+16x-6-4x^2-7x-16x-28-10x^2-5x+2x+1=0\)
<=> \(10x^2-19x-33=0\)
<=> \(10x^2-30x+11x-33=0\)
<=> \(10x\left(x-3\right)+11\left(x-3\right)=0\)
<=> \(\left(x-3\right)\left(10x+11\right)=0\)
<=> \(x=3;x=-\frac{11}{10}\)
a,\(\Leftrightarrow\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)-17=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x-17=0\)
\(\Leftrightarrow9x-10=0\)
\(\Leftrightarrow x=\frac{10}{9}\)
1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)
Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c
=> a+b+c=0=> a^3+b^3+c^3=3abc=0
=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0
=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0
tìm được x=3
2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)
<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)
<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
<=> (x-y-1)^2=0 và (y+2)^2=0
=> x=-1;y=-2
a) \(9\left(x-1\right)^2-\frac{4}{9}\div\frac{2}{9}=\frac{1}{4}\)
\(\Leftrightarrow9\left(x-1\right)^2-2=\frac{1}{4}\)
\(\Leftrightarrow9\left(x-1\right)^2=\frac{9}{4}\)
\(\Leftrightarrow\left(x-1\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\frac{1}{2}\\x-1=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
b) \(\left(3x-1\right)^6=\left(3x-1\right)^4\)
\(\Leftrightarrow\left(3x-1\right)^6-\left(3x-1\right)^4=0\)
\(\Leftrightarrow\left(3x-1\right)^4\cdot\left[\left(3x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(3x-1\right)^4=0\\\left(3x-1\right)^2=1\end{cases}}\Leftrightarrow x\in\left\{0;\frac{1}{3};\frac{2}{3}\right\}\)
b: =>4x^2+8x-8x^2+5x-10=0
=>-4x^2+13x-10=0
=>x=2 hoặc x=5/4
c: =>2x^2-5x+6x-15=2x^2+8x
=>x-15=8x
=>-7x=15
=>x=-15/7
d: =>3x^2+15x-2x-10-3x^2-12x=5
=>x-10=5
=>x=15
e: =>x^2-3x+2x^2+2x=3x^2-12
=>-x=-12
=>x=12
a) (x - 1) . (x5 + x4 + x3 + x2 + x + 1) = (x . x5 + x . x4 + x . x3 + x . x2 + x . x + x . 1) - (1 . x5 + 1 . x4 + 1 . x3 + 1 . x2 + 1 . x + 1 . 1)
= (x6 + x5 + x4 + x3 + x2 + x ) - (x5 + x4 + x3 + x2 + x + 1)
= x6 + x5 + x4 + x3 + x2 + x - x5 - x4 - x3 - x2 - x - 1
= x6 + (x5 - x5) + (x4 - x4) + (x3 - x3) + (x2 - x2) + (x - x) - 1
= x6 - 1
b) (x + 1) . (x6 - x5 + x4 - x3 + x2 - x + 1) = (x . x6 - x . x5 + x . x4 - x . x3 + x . x2 - x . x + x . 1) + (1 . x6 - 1 . x5 + 1 . x4 - 1 . x3 + 1 . x2 - 1 . x + 1 . 1)
= (x7 - x6 + x5 - x4 + x3 - x2 + x ) + (x6 - x5 + x4 - x3 + x2 - x + 1)
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7+(-x6 + x6) + (x5 - x5) + (-x4 + x4) + (x3 - x3) + (-x2 + x2) + (x - x) + 1
= x7 + 1
a: \(3x\left(x-3\right)+4x-12=0\)
=>\(3x\left(x-3\right)+\left(4x-12\right)=0\)
=>\(3x\left(x-3\right)+4\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(3x+4\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b: Sửa đề:\(\left(x+1\right)\left(x^2-x+1\right)-x^3+2x=17\)
\(\Leftrightarrow x^3+1-x^3+2x=17\)
=>2x+1=17
=>2x=17-1=16
=>\(x=\dfrac{16}{2}=8\)
c: \(\left(x-3\right)\left(x+5\right)+\left(x-1\right)^2-6x^4y^2:3x^2y^2=15x\)
=>\(x^2+2x-15+x^2-2x+1-2x^2=15x\)
=>\(15x=-14\)
=>\(x=-\dfrac{14}{15}\)
<=>5.x-3{4.x[4.x-15.x+6]}=182
<=>5.x-3.{4.x[6-9x]}=182
<=>5.x-3.{24x-36x2}=182
<=>5x-72x+108x2-182=0
<=>108x2-67x-182=0