Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{6}{13}:\left(\dfrac{1}{2}-x\right)=\dfrac{15}{39}\)
\(\dfrac{1}{2}-x=\dfrac{6}{13}:\dfrac{15}{39}\)
\(\dfrac{1}{2}-x=\dfrac{6}{5}\)
\(x=\dfrac{1}{2}-\dfrac{6}{5}\)
\(x=-\dfrac{7}{10}\)
b) \(3\times\left(\dfrac{x}{4}+\dfrac{x}{28}+\dfrac{x}{70}+\dfrac{x}{130}\right)=\dfrac{60}{13}\)
\(3\times x\times\left(\dfrac{1}{4}+\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}\right)=\dfrac{60}{13}\)
\(x\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{7\times13}\right)=\dfrac{60}{13}\)
\(x\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}\right)=\dfrac{60}{13}\)
\(x\times\left(1-\dfrac{1}{13}\right)=\dfrac{60}{13}\)
\(x\times\dfrac{12}{13}=\dfrac{60}{13}\)
\(x=\dfrac{60}{13}:\dfrac{12}{13}\)
\(x=5\)
Ta có:
\(M=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...\)
Dựa vào quy luật trên=>Số hạng thứ 30 là:\(\frac{1}{98.101}\)
\(\Rightarrow3M=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{98}-\frac{1}{101}\)
\(\Rightarrow M=\left(1-\frac{1}{101}\right):3=\frac{100}{101}.\frac{1}{3}=\frac{100}{303}\)
Mình viết hơi tắt mong bạn thông cảm.
( x + x + x + .... + x + x ) + ( 1+ 4 + 7 + 10 + ..... + 28 ) = 155
số các số tự nhiên bằng số các chữ số x :
( 28 - 1 ) : 3 + 1 = 10 ( số )
tổng các số tự nhiên là :
( 28 + 1 ) x 10 : 2 = 145
ta có : 10 * x + 145 = 155
10 * x = 155 - 145
10 * x = 10
x = 10 : 10
x = 1
vậy x = 1
Ad ĐỪNG XÓA
Học tiếng anh free vừa học vừa chơi đây
các bạn vào đây đăng kí nhá : https://iostudy.net/ref/165698
a) Ta có B = \(\left(\frac{2}{15}+\frac{3}{40}+\frac{4}{96}+\frac{5}{204}+\frac{6}{391}\right).x.\left(x-1\right)=\frac{20}{69}\)
=> \(\left(\frac{2}{3.5}+\frac{3}{5.8}+\frac{4}{8.12}+\frac{5}{12.17}+\frac{6}{17.23}\right).x.\left(x-1\right)=\frac{20}{69}\)
=> \(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{23}\right).x.\left(x-1\right)=\frac{20}{69}\)
=> \(\left(\frac{1}{3}-\frac{1}{23}\right).x.\left(x-1\right)=\frac{20}{69}\)
=> \(\frac{20}{69}.x.\left(x-1\right)=\frac{20}{69}\)
=> \(x.\left(x-1\right)=\frac{20}{69}:\frac{20}{69}\)
=> \(x.\left(x-1\right)=1\)
=> \(x\in\varnothing\)
a) \(\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+....+\frac{1}{8554}\right).x=\frac{31}{94}\)
=> \(\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{91.94}\right).x=\frac{31}{94}\)
=> \(\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}\right)=\frac{31}{94}\)
=> \(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{91}-\frac{1}{94}\right).x=\frac{31}{94}\)
=> \(\frac{1}{3}.\left(1-\frac{1}{94}\right).x=\frac{31}{94}\)
=> \(\frac{1}{3}.\frac{93}{94}.x=\frac{31}{94}\)
=> \(\frac{31}{94}.x=\frac{31}{94}\)
=> \(x=\frac{31}{94}:\frac{31}{94}\)
=> \(x=1\)
\(52:x=\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}\)
\(52:x=\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+\frac{1}{10\times13}\)
\(52:x=\frac{1}{3}\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+\frac{3}{10\times13}\right)\)
\(52:x=\frac{1}{3}\times\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}\right)\)
\(52:x=\frac{1}{3}\times\left(1-\frac{1}{13}\right)\)
\(52:x=\frac{1}{3}\times\frac{12}{13}\)
\(52:x=\frac{4}{13}\)
\(x=52:\frac{4}{13}\)
\(x=169\)
52 :x =1/4 + 1/28 +1/70 + 1/130
52 : x = 4/13
x = 52 : 4/13
x = 169