K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)

\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)

\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)

\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)

\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)

\(\Leftrightarrow x=\frac{6}{11}\)

13 tháng 4 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x+1=100\)

\(\Leftrightarrow x=100-1\)

\(\Leftrightarrow x=99\)

A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2004}\right)\)

A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)....\left(\frac{2004}{2004}-\frac{1}{2004}\right)\)

A = \(\frac{1}{2}\)x\(\frac{2}{3}.\)\(\frac{3}{4}....\)\(\frac{2003}{2004}\)

A = \(\frac{1}{2004}\)

14 tháng 6 2016

a) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)

                                                              \(=1-\frac{1}{32}=\frac{31}{32}\)

b) \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)\

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(\frac{1}{4}-\frac{1}{6}=\frac{1}{12}\)

4 tháng 7 2017

\(3^2\times\frac{1}{243}\times81^2\times\frac{1}{3^3}\)

\(=3^2\times\frac{1}{3^5}\times\left(3^4\right)^2\times\frac{1}{3^3}\)

\(=\left(3^2\times3^8\right)\times\left(\frac{1}{3^5}\times\frac{1}{3^3}\right)\)

\(=3^{10}\times\frac{1}{3^8}\)

\(=3^2\)

\(=9\)

\(\left(4\times2^5\right)\div\left(2^3\times\frac{1}{6}\right)\)

\(=\left(2^2\times2^5\right)\div\left(2^3\times\frac{1}{2\times3}\right)\)

\(=2^7\div2^2\times3\)

\(=2^5\times3\)

\(=96\)

19 tháng 4 2020

\(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}\)

\(=3^2.\frac{1}{3^5}.\left(3^4\right)^2.\frac{1}{3^3}\)

\(=\left(3^2.3^8\right).\left(\frac{1}{3^5}.\frac{1}{3^3}\right)\)

\(=3^{10}.3^{-8}\)

\(=3^2=9\)

\(\left(4.2^5\right):\left(2^3.\frac{1}{6}\right)\)

\(=2^7:2^2.3\)

\(=2^5.3\)

\(=96\)

21 tháng 10 2018

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+........+\frac{1}{99\cdot100}\right)-2x=\frac{1}{2}\)

\(\left(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{100-99}{99\cdot100}\right)-2x=\frac{1}{2}\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\)

\(\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\)

\(\frac{99}{100}-2x=\frac{1}{2}\)

\(2x=\frac{99}{100}-\frac{1}{2}\)

\(2x=\frac{49}{100}\)

\(x=\frac{49}{100}:2\)

\(x=\frac{49}{200}\)

21 tháng 10 2018

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\)

\(\frac{99}{100}-2x=\frac{1}{2}\)

\(\frac{99-50}{100}=2x\)

\(49=200x\)

\(x=\frac{49}{200}\)

31 tháng 7 2015

a/(x+1)+(x+2)+...+(x+100)=5750

x+1+x+2+...+x+100=5750

100x+(1+2+...+100)=5750

100x+50.(100+1)=5750

100x+5050=5750

100x=700

x=7.

b/ 1/1.2+1/2.3+...+1/x(x+1)=2015/2016

1/1-1/2+1/3-1/4+...+1/x-1/x+1=2015/2016

1-1/x+1=2015/2016

1/x+1=1/2016

x+1=2016

x=2015