Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x.\frac{7}{9}=\frac{2}{3}+2\frac{1}{2}\)
\(x.\frac{7}{9}=\frac{19}{6}\)
\(x=\frac{19}{6}:\frac{7}{9}\)
\(x=\frac{57}{14}\)
b) \(\frac{5}{7}+x:\frac{9}{4}=\frac{4}{3}\)
\(x:\frac{9}{4}=\frac{4}{3}-\frac{5}{7}\)
\(x:\frac{9}{4}=\frac{13}{21}\)
\(x=\frac{13}{21}.\frac{9}{4}\)
\(x=\frac{39}{28}\)
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\times\left(x+1\right)}=1\frac{9}{11}\)
=>\(\left\{1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\times\left(x+1\right)}\right\}\times\frac{1}{2}=1\frac{9}{11}\times\frac{1}{2}\)
=>\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\times\left(x+1\right)}=\frac{10}{11}\)
=>\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}=\frac{10}{11}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{x}-\frac{1}{x+1}=\frac{10}{11}\)
=>\(1-\frac{1}{x+1}=\frac{10}{11}\)
=> \(\frac{1}{x+1}=1-\frac{10}{11}\)
=> \(\frac{1}{x+1}=\frac{1}{11}\)
=> x + 1 = 11
=> x = 10
Nhấn đúng cho mk nha^^
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Leftrightarrow2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}\right)=2.\frac{8}{17}\)
\(\Leftrightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)
\(\Rightarrow x+2=17\Rightarrow x=15\)
\(2009-\left(4\frac{5}{9}+x-7\frac{7}{8}\right):15\frac{3}{2}=2008\)
\(\Leftrightarrow2009-\left(\frac{41}{9}+x-\frac{63}{8}\right):\frac{33}{2}=2008\)
\(\Leftrightarrow2009-\left(x-\frac{239}{72}\right):\frac{33}{2}=2008\)
\(\Leftrightarrow2009-\frac{2x}{33}+\frac{239}{1188}=2008\)
\(\Leftrightarrow\frac{-2x}{33}=\frac{-1427}{1188}\)
\(\Leftrightarrow-2376x=-47091\)
\(\Leftrightarrow x=\frac{1427}{72}\)