Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x(x2 - 4) = 0
Mà 3 khác 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2;2\end{cases}}\)
x = 2 hoặc = 6
Cách làm:
x2 - 8x + 12 = 0
x2 - 6x - 2x + 12 = 0
( x2 - 6x ) - ( 6x - 12 ) = 0
x . ( x - 2 ) - 6 . ( x - 2 ) = 0
( x - 2 ) . ( x - 6 ) = 0
\(\Rightarrow\hept{\begin{cases}x-2=0\\x-6=0\end{cases}}\hept{\begin{cases}x=2\\x=6\end{cases}}\)
\(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\) \(\Leftrightarrow\left(x+3\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-3\\x=\frac{3}{2}\end{cases}}\)
\(x^3-4x^2-4x+1\)
\(=x^3-5x^2+x+x^2-5x+1\)
\(=x\left(x^2-5x+1\right)+\left(x^2-5x+1\right)\)
\(=\left(x+1\right)\left(x^2-5x+1\right)\)
Mà \(x^3-4x^2-4x+1=A\left(x^2-5x+1\right)\)
\(\Rightarrow A=x+1\)
\(\left(x+3\right)^3-3\cdot\left(3x+1\right)^2+\left(2x+1\right)\cdot\left(4x^2-2x+1\right)=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-3\cdot\left(9x^2+6x+1\right)+8x^3-4x^2+2x+4x^2-2x+1=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-27x^2-18x-3+8x^3-4x^2+2x+4x^2-2x+1=54\)
\(\Leftrightarrow9x^3-18x^2+9x-29=0\)
\(\Leftrightarrow x=2,208024627\)
\(a,x^3-\frac{1}{4}x=0\)
\(\Leftrightarrow x\left(x^2-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=\frac{1}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm\frac{1}{2}\end{cases}}}\)
\(b,\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{2}{3}\\x=4\end{cases}}\)
\(c,x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}}\)
a) x3 - 14/x = 0
<=> x(x + 1/2)(x - 1/2) = 0
<=> x = 0 hoặc x + 1/2 = 0 hoặc x - 1/2 = 0
x = 0 - 1/2 x = 0 + 1/2
x = -1/2 x = 1/2
=> x = 0 hoặc x = -1/2 hoặc x = 1/2
b) (2x - 1)2 - (x + 3)2 = 0
<=> 3x2 - 10x - 8 = 0
<=> 3x2 + 2x - 12x - 8 = 0
<=> x(3x + 2) - 4(3x + 2) = 0
<=> (3x + 2)(x - 4) = 0
3x + 2 = 0 hoặc x - 4 = 0
3x = 0 - 2 x = 0 + 4
3x = -2 x = 4
x = -2/3
=> x = -2/3 hoặc x = 4
c) x2(x - 3) + 12 - 4x = 0
<=> (x2 - x - 6)(x - 2) = 0
<=> (x - 3)(x + 2)(x - 2) = 0
x - 3 = 0 hoặc x + 2 = 0 hoặc x - 2 = 0
x = 0 + 3 x = 0 - 2 x = 0 + 2
x = 3 x = -2 x = 2
=> x = 3 hoặc x = -2 hoặc x = 2
a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)
b: \(2x^2-5x+2=0\)
=>(x-2)(2x-1)=0
=>x=1/2
Thay x=1/2 vào P, ta được:
\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)
\(x\left(x-3\right)-12+4x=0\)
\(\Leftrightarrow x^2-3x-12+4x=0\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)