Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\Leftrightarrow5x^2-6x+1=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow x=\frac{1}{5}\) hoặc x = 1
c) \(\Leftrightarrow x^2+4x-21-x^2-4x+5=0\Leftrightarrow-16=0\) (vô lí) => PT vô nghiệm
d) \(\Leftrightarrow x^2+3x-10=0\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\)x = 2 hoặc x = -5
e) \(\Leftrightarrow x\left(x-2\right)=0\)<=> x = 0 hoặc x = 2
3x2 + 3x - 5( x + 1 ) = 0
<=> ( 3x2 + 3x ) - 5( x + 1 ) = 0
<=> 3x( x + 1 ) - 5( x + 1 ) = 0
<=> ( x + 1 )( 3x - 5 ) = 0
<=> x + 1 = 0 hoặc 3x - 5 = 0
<=> x = -1 hoặc x = 5/3
: 1/ (x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15
= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15
= (x² + 8x + 7).(x² + 8x + 15) + 15
= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được.
(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2).
Thay (1) vào (2) ta được: đa thức trên được phân tích thành:
(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10).
Lưu ý: phương pháp này có tên là "Đặt ẩn phụ".
2/ x^7 - x² - 1 = x^7 - x² - 1 + x - x = (x^7 - x) + (-x² + x - 1)
= x(x^6 - 1) - (x² - x + 1) = x(x³ - 1)(x³ + 1) - (x² - x + 1)
= (x^4 - x)(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ (x^4 - x)(x + 1) - 1 ]
= (x² - x + 1).(x^5 + x^4 - x² - x - 1).
3/ x^4 + 4y^4 = x^4 + 4y^4 + 4x²y² - 4x²y²
= (x^4 + 4x²y² + 4y^4) - (2xy)²
= (x² + 2y²)² - (2xy)² = [ (x² + 2y²) + (2xy) ].[ (x² + 2y²) - (2xy) ]
= (x² + 2xy + 2y²).(x² - 2xy + 2y²)
4/ x^5 + x + 1 = x^5 + x + 1 + x² - x²
= (x^5 - x²) + (x² + x + 1) = x²(x³ - 1) + (x² + x + 1)
= x²(x - 1)(x² + x + 1) + (x² + x + 1) = (x² + x + 1).[ x²(x - 1) + 1 ]
= (x² + x + 1).(x³ - x² + 1).
5/ x^5 + x - 1 = x^5 + x - 1 + x² - x² = (x^5 + x²) + (-x² + x - 1)
= x²(x³ + 1) - (x² + x - 1) = x²(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ x²(x + 1) - 1 ] = (x² - x + 1).(x³ + x² - 1).
6/ (x² + y² - z²)² - 4x²y² = (x² + y² - z²)² - (2xy)²
= [ (x² + y² - z²) - 2xy ].[ (x² + y² - z²) + 2xy ]
= [ x² + y² - z² - 2xy ].[ x² + y² - z² + 2xy ]
= [ (x² - 2xy + y²) - z² ].[ (x² + 2xy + y²) - z² ]
= [ (x - y)² - z² ].[ (x + y)² - z² ] = (x-y+z)(x-y-z)(x+y+z)(x+y-z).
Mong bạn sẽ hiểu
Ngoài cửa chợt có tiếng gõ cửa mạnh vang dội vào trong nhà, Huy đang ngủ say liền giật mình tỉnh dậy. Đầu anh đau như búa bổ, hai mắt anh khẽ nheo lại để cố sức chặn đứng những tia sáng của ngày sớm.
Huy loạng choạng đứng dậy đi về phía cửa, kéo thanh chốt cài cửa xuống rồi dụi mắt nhìn quanh xem có ai không.
Dưới tiết trời sáng và âm u, gió lạnh hơi hiu hiu thổi qua, Huy tự nhẩm cái thời tiết này mà cũng có người mò qua đây làm gì không biết. Anh không biết là liệu có phải có con ma nào nó trêu mình vào giờ này hay không? Vì rõ là trời còn sớm mà, ngẩng lên nhìn đồng hồ thì mới chỉ có năm giờ sáng mà thôi. Giờ này người ta có dậy sớm thì cũng đi làm đồng chứ qua nhà Huy để làm cái gì?
số 8 trong dãy số trên thuộc dạng 800000 đọc là: tám trăm nghìn
t i c k nha!! 536457567586876968978987979578674
Ta có : \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)
Thay \(x=4-\sqrt{15}\) vào pt được :
\(\left(4-\sqrt{15}\right)^2.a+\left(4-\sqrt{15}\right)b+1=0\Leftrightarrow\left(31-8\sqrt{15}\right)a+\left(4-\sqrt{15}\right)b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(-8a-b\right)+\left(31a+4b+1\right)=0\)
Vì a,b là số hữu tỉ nên ta có : \(\begin{cases}8a+b=0\\31a+4b=-1\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=-8\end{cases}\)
Ta có:\(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)
Thay vào ta có:
\(a\cdot\left(4-\sqrt{15}\right)^2+b\cdot\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\cdot\left(31-8\cdot\sqrt{15}\right)+4b-b\cdot\sqrt{15}+1=0\)
\(\Leftrightarrow\left(31a+4b+1\right)-\left(8a+b\right)\cdot\sqrt{15}=0\)
Do a,b hữu tỉ \(\Rightarrow\begin{cases}31a+4b+1=0\\8a+b=0\end{cases}\)\(\Leftrightarrow\begin{cases}31a-32a+1=0\\b=-8a\left(1\right)\end{cases}\)
31a-3a+1=0 <=>a=1.Từ (1) =>b=-8
Vậy a= 1 và b= -8
1) \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
2) \(x^2-2x=24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2+4x-6x-24=0\)
\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
( x - 1 )( x + 2 ) - x - 2 = 0
<=> ( x - 1 )( x + 2 ) - ( x + 2 ) = 0
<=> ( x + 2 )( x - 2 ) = 0
<=> x = ±2
( 2x - 7 )3 = 8( 7 - 2x )2
<=> ( 2x - 7 )3 - 8( 2x - 7 )2 = 0
<=> ( 2x - 7 )2( 2x - 15 ) = 0
<=> x = 7/2 hoặc x = 15/2
(x+2)(x-1)-(x-3)(x+5)=0
x2+2x-x-2-x2+3x-5x+15=0
-x+13=0
x=13
vậy......
x2-x+2x-2-x2+5x-3x-15=0 nhân vô
2x-15=0 tối giản
2x=15 đổi vế
x=15/2 chia