Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x ( x - 1 ) < 0
\(\Rightarrow\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>1\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> 0 < x < 1
Vậy 0 < x < 1
b) Lát nghĩ ^^
b) k chắc lắm ( tình bày theo ý hiểu thoii nha )
\(\frac{x^2\left(x-3\right)}{x-9}\le0\)
\(\Rightarrow\) x2 ( x - 3 ) = 0 hoặc \(\hept{\begin{cases}x^2\left(x-3\right)< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2\left(x-3\right)>0\\x-9< 0\end{cases}}\)
Mà \(x^2\ge0\forall x\)
\(\Rightarrow\) x - 3 = 0 hoặc \(\hept{\begin{cases}x-3< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3>0\\x-9< 0\end{cases}}\)
\(\Rightarrow\) x = 3 hoặc \(\hept{\begin{cases}x< 3\\x>9\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>3\\x< 9\end{cases}}\)
\(\Rightarrow3\le x< 9\)
Vậy \(3\le x< 9\)
@@ Học tốt
Chiyuki Fujito
LG :
x( 1 - 2 +2^2 - 2^3 ........+2^2006 - 2^ 2007) = 2^2008 - 1
co 1 - 2+ 2^2 - 2^3 .........- 2^2007 = - ( 2^2008 - 1) /3
Do đó x = -3
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
vì \(|x|=1,25\Rightarrow x=1,25\)
\(x-y=1,25-\left(-0,75\right)=1,25+0,75=2\)
tk mk 1,5 k thôi vì mk làm được 1 câu.
ihi. ~HỌC TÔT~
Để A có nghiệm \(\Leftrightarrow A=0\)
\(\Leftrightarrow2x^3+x^2+x-1=0\)
\(\Leftrightarrow2x^3-x^2+2x^2-x+2x-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+x+1\right)=0\)
Mà : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy : để đa thức A có nghiệm thì \(x=\frac{1}{2}\)
\(=\left(x-1\right)\left(2005x+1\right)\)
=> PT có nghiệm : S={1;-1/2005}
1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
\(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
=> x = 75.4 : 15 = 20 ;
y = 60.4 : 15 = 16 ;
z = 45.4 : 15 = 12
Vậy x = 20 ; y = 16 ; z = 12
2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Nếu x + y + z + t = 0
=> x + y = - (z + t)
=> y + z = - (t + x)
=> z + t = - (x + y)
=> t + x = - (z + y)
Khi đó :
P = \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
=> P = 4
Nếu x + y + z + t khác 0
=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)
=> y + z + t = z + t + x = t + x + y = x + y + z
=> x =y = z = t
Khi đó : P = 1 + 1 + 1 + 1 = 4
Vậy nếu x + y + z + t = 0 thì P = - 4
nếu x + y + z + t khác 0 thì P = 4
\(x^{2017}=\frac{x^{2017}-2}{3}\)
\(\Leftrightarrow3x^{2017}=x^{2017}-2\)
\(\Leftrightarrow2x^{2017}=-2\)
\(\Leftrightarrow x^{2017}=-1\)
\(\Leftrightarrow x=-1\)
\(x^{2017}=\frac{x^{2017}-2}{3}\)
\(\Leftrightarrow\frac{2x^{2017}+2}{3}=0\)
\(\Leftrightarrow2x^{2017}+2=0.3\)
\(\Leftrightarrow2x^{2017}+2=0\)
\(\Leftrightarrow2x^{2017}=0-2\)
\(\Leftrightarrow2x^{2017}=-2\)
\(\Leftrightarrow x^{2017}=\left(-1\right)^{\frac{1}{2017}}\)
x = 1