Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\left(x\right)-P\left(x\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3-8+12\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3+4\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow-6x^2+x^3+4-x^3+3x^2-6x+8=0\)
\(\Leftrightarrow-3x^2-6x+12=0\)
\(\Leftrightarrow-3\left(x^2+2x-4\right)=0\)
\(\Leftrightarrow x^2+2x-4=0\)
\(\Leftrightarrow x^2+2x+1=5\)
\(\Leftrightarrow\left(x+1\right)^2=5\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\Leftrightarrow x=\pm\sqrt{5}-1\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3-8+12\right)\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3+4\right)\)
\(P\left(x\right)-Q\left(x\right)=x^3-3x^2+6x-8+6x^2-x^3-4\)
\(P\left(x\right)-Q\left(x\right)=3x^2+6x-4\)
Ta cần phân tích \(3x^2+6x-4\) thành nhân tử
Ta có:\(P\left(x\right)-Q\left(x\right)=-\frac{1}{3}\left(-9x^2-18x+12\right)\)
\(=-\frac{1}{3}\left[21-\left(9x^2+18x+9\right)\right]\)
\(=-\frac{1}{3}\left[21-\left(3x+3\right)^2\right]\)
\(=-\frac{1}{3}\left(\sqrt{21}-3x-3\right)\left(\sqrt{21}+3x+3\right)\)
\(\Rightarrow x=\frac{\sqrt{21}-3}{3};x=\frac{-\sqrt{21}-3}{3}\)
1/4×2/6×3/8×4/10×...×14/30×15/32=1/2^x
<=>1/(2×2)×2/(2×3)×...×14/(2×15)×15/2^5=1/2^x
<=>1/2×1/2×...×1/2×1/(2^5)=1/2^x
<=>1/2^19=1/2^x=>x=19
Đề mình không ghi lại nhé.
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{4\times6\times10\times...\times30\times32}=\frac{1}{2^x}\)\(\frac{1}{2^x}\)
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{2\times4\times6\times8\times10\times...\times30\times32}\)\(=\frac{1}{2^{x+1}}\)
\(\Rightarrow\frac{1}{2^{15}\times32}=\)\(\frac{1}{2^{x+1}}\)
\(\Rightarrow2^{15}\times2^5=2^{x+1}\)
\(\Rightarrow2^{20}=2^{x+1}\)
\(\Rightarrow x+1=20\Rightarrow x=19\)
Vậy \(x=1\)
Học tốt nhaaa!
với x<1=>| x- 1| + | x-2| + |x-3| + x ==1-x+2-x+3-x+x=6-2x=0=>x=3(loại)
với 1<x<2=>| x- 1| + | x-2| + |x-3| + x ==x-1+2-x+3-x+x=4=0(loại)
với 2<x<3=>| x- 1| + | x-2| + |x-3| + x ==x-1+x-2+3-x+x=3x=0=>x=0(loại)
với 3<x=>| x- 1| + | x-2| + |x-3| + x =x-1+x-2+x-3+x=4x-6=0=>x=3/2(loại)
vậy ko tìm được x
Xét \(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{20}\ge0\)
\(\left(4z-3\right)^{206}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{20}+\left(4z-3\right)^{206}\ge0\)(1)
Mà: \(\left|3x-5\right|+\left(2y+5\right)^{20}+\left(4z-3\right)^{206}\le0\)(2)
(1)(2) suy ra: \(\left|3x-5\right|+\left(2y+5\right)^{20}+\left(4z-3\right)^{206}=0\)
\(\hept{\begin{cases}3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\\\left(2y+5\right)^{20}=0\Rightarrow2y+5=0\Rightarrow2y=-5\Rightarrow y=-\frac{5}{2}\\\left(4z-3\right)^{206}=0\Rightarrow4z-3=0\Rightarrow4z=3\Rightarrow z=\frac{3}{4}\end{cases}}\)
Vậy............
\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)
Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)
Vậy \(x=1;y=-2;z=3\)
Lời giải:
$(x^4)^2=\frac{x^{12}}{x^5}$ ($x\neq 0$)
$x^8=x^{12-5}=x^7$
$x^8-x^7=0$
$x^7(x-1)=0$
$\Rightarrow x^7=0$ hoặc $x-1=0$
$\Rightarrow x=0$ hoặc $x=1$
Mà $x\neq 0$ nên $x=1$
(x-2)(x+2/3)>0
<=>x-2 và x+2/3 cùng dấu
+)\(\int^{x-2>0}_{x+\frac{2}{3}>0}\Rightarrow\int^{x>2}_{x>-\frac{2}{3}}\Rightarrow x>2\left(1\right)\)
+)\(\int^{x-2<0}_{x+\frac{2}{3}<0}\Rightarrow\int^{x<2}_{x<-\frac{2}{3}}\Rightarrow x<-\frac{2}{3}\left(2\right)\)
từ (1);(2)=>x>2 hoặc x<-2/3 thì (x-2)(x+2/3)>0