K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

Mk bít dùng liên hợp thui

\(\sqrt{3x+4}-2+\sqrt{2x}+\sqrt{1-x}-1=0\)

\(\Leftrightarrow\sqrt{x}\left(\frac{3\sqrt{x}}{\sqrt{3x+4}+2}+\sqrt{2}-\sqrt{x}\right)=0\)

heheh đến đây mk chưa giải 

sai thì thông cảm nhá

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

Bài 1: 

a: Ta có: \(\sqrt{3x^2}=\sqrt{12}\)

\(\Leftrightarrow3x^2=12\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

b: Ta có: \(\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

17 tháng 6 2021

a) \(\sqrt{2x-3}=x-3\) (ĐK: \(x\ge\dfrac{3}{2}\))

<=> \(\left\{{}\begin{matrix}x\ge3\\2x-3=\left(x-3\right)^2\left(1\right)\end{matrix}\right.\)

(1) <=> \(2x-3=x^2-6x+9\)

<=> \(x^2-8x+12=0\)

<=> (x-2)(x-6) = 0 <=> \(\left[{}\begin{matrix}x=2\left(l\right)\\x=6\left(c\right)\end{matrix}\right.\)

KL: Phương trình có nghiệm duy nhất x = 6
b) \(\sqrt{10-x}+\sqrt{x+3}=5\) (ĐK: \(-3\le x\le10\))

<=> \(\left(\sqrt{10-x}+\sqrt{x+3}\right)^2=25\)

<=> \(10-x+x+3+2\sqrt{\left(10-x\right)\left(x+3\right)}=25\)

<=> \(\sqrt{\left(10-x\right)\left(x+3\right)}=6\)

<=> (10-x)(x+3) = 36

<=> 7x - x2 + 30 = 36

<=> x2 -7x + 6 = 0

<=> (x-1)(x-6) = 0

<=> \(\left[{}\begin{matrix}x=1\left(c\right)\\x=6\left(c\right)\end{matrix}\right.\)

KL: Phương trình có nghiệm S = {1;6}

c) \(\sqrt{x+3}-\sqrt{x-4}=1\) (ĐK: \(x\ge4\))

<=> \(\sqrt{x+3}=\sqrt{x-4}+1\)

<=> \(x+3=x-4+1+2\sqrt{x-4}\)

<=> \(\sqrt{x-4}=3\)

<=> x-4 = 9 <=> x = 13 (c)

KL: Phương trình có nghiệm duy nhất x = 13

17 tháng 6 2021

a) ĐK: `x≥3`

`\sqrt(2x-3)=x-3`

`<=>2x-3=(x-3)^2`

`<=>2x-3=x^2-6x+9`

`<=>x^2-8x+12=0`

`<=>` \(\left[{}\begin{matrix}x=6\left(TM\right)\\x=2\left(L\right)\end{matrix}\right.\)

Vậy `x=2`.

b) ĐK: `-3<=x<=10`

`\sqrt(10-x)+\sqrt(x-3)=5`

`<=>10-x+x-3+2\sqrt((10-x)(x-3))=25`

`<=>2\sqrt((10-x)(x-3))=18`

`<=>\sqrt((10-x)(x-3))=9`

`<=>(10-x)(x-3)=81`

`<=>-x^2+13x-30=81`

`<=>x^2-13x+111=0` (VN)

17 tháng 1 2019

@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
ĐK: $x,y,z\geq 0$

Áp dụng BĐT Cô-si:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)

Cộng theo vế và thu gọn:

\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)

Dấu "=" xảy ra khi $x=y=z$

Thay vào pt $(1)$ thì suy ra $x=y=z=1$

2:

a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)

=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

A=2 thì a^2+2=1

=>a^2=-1(loại)

=>A>2 với mọi a

b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)

=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)

=>(căn a+căn b)(a-2*căn ab+b)>=0

=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)

 

31 tháng 7 2023

1

ĐK: `x>1`

PT trở thành:

\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)

Vậy PT vô nghiệm.

b

ĐK: \(x\ge2\)

Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))

=> \(x=t^2+2\)

PT trở thành: \(t^2+2-5t+2=0\)

\(\Leftrightarrow t^2-5t+4=0\)

nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)

\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

a.

ĐKXĐ: $x\geq 0; y\geq 1$

PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:

$\sqrt{x}-2=\sqrt{y-1}-3=0$

$\Leftrightarrow x=4; y=10$

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

b.

ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$

$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$

$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$