Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow\frac{x+4+2000}{2000}+\frac{x+3+2001}{2001}=\frac{x+2+2002}{2002}+\frac{x+1+2003}{2003}\)
<=> \(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
<=> \(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
<=> x + 2004 = 0
<=> x = -2004.
\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\right)\)
\(\Rightarrow x=-2004\)
2.
a) Ta có:
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right)\left(\frac{1}{13}+\frac{1}{14}\right)\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)nên \(x+1=0\Leftrightarrow x=-1\)
Vậy x = -1
b) Ta có:
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}\right)=\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{2003}\right)\)
Vì \(\frac{1}{2000}+\frac{1}{2001}\ne\frac{1}{2002}+\frac{1}{2003}\)nên \(x+2004=0\Leftrightarrow x=-2004\)
Vậy, x = -2004
a) tạm bỏ số 1 ra => có 2012 số hạng=> có 1006 cặp =(-1)
=> A=1+-(-1).1006=-1005
a) \(\Leftrightarrow\frac{x+7}{2003}+1+\frac{x+4}{2006}+1-\frac{x-1}{2011}-1-\frac{x-5}{2015}-1=0\)
\(\Leftrightarrow\frac{x+2010}{2003}+\frac{x+2010}{2006}-\frac{x+2010}{2011}-\frac{x+2010}{2015}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2003}+\frac{1}{2006}-\frac{1}{2011}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x+2010=0\) ( vì 1/2003 + 1/2006 -- 1/2011 -- 1/2015 \(\ne\)0)
\(\Leftrightarrow x=-2010\)
câu b làm tương tự (có gì không hiểu hỏi mk nha) >v<
a) Vì (2x - 5)2000 và (3y + 4)2002 đều có số mũ là chẵn => (2x - 5)2000 \(\ge\) 0; (3y + 4)2002 \(\ge\) 0
Mà tổng trên lại \(\le\) 0
=> (2x - 5)2000 = (3y + 4)2002 = 0
=> 2x - 5 = 3y + 4 = 0
=> x = 2,5; y = \(\frac{-4}{3}\)
b) x = 18 - 0,8 : \(\frac{1,5}{\frac{3}{2}.\frac{4}{10}.\frac{50}{2}}\)+ \(\frac{1}{4}\)+ \(\frac{1+0,5.4}{6-\frac{46}{23}}\)
= 18 - \(\frac{8}{10}:\frac{1,5}{15}+\frac{1}{4}+\frac{3}{4}\)
= \(18-8+1=11\)
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
(x+4/2000 + 1)+(x+3/2001 + 1) = (x+2/2002 + 1)+(x+1/2003)+1
(x+2004/2000) + (x+2004/2001) = (x+2004/2002) + (x+2004/2003)
(x+2004).(1/2000+1/2001) = (x+2004).(1/2002+1/2003)
+ Với x+2004=0 suy ra x=-2004. Ta có 0.(1/2000+1/2001)=0.(1/2002+1/2003), đúng
+ Với x+2004 khác 0 thì (x+2004).(1/2000+1/2001) = (x+2004).(1/2002+1/2003)
1/2000+1/2001 = 1/2002+1/2003, vô lí vì 1/2000+1/2001 > 1/2002+1/2003
Vậy x=-2004
đăng hoài thế!!!
67578579875645