Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2\sqrt{x}+3=0\)
\(\Leftrightarrow2\sqrt{x}=-3\)
\(\Leftrightarrow\sqrt{x}=-\frac{3}{2}\)( loại )
\(b,\frac{5}{12}\sqrt{x}-\frac{1}{6}=\frac{1}{3}\Leftrightarrow\frac{5}{12}\sqrt{x}=\frac{1}{2}\Leftrightarrow\sqrt{x}=\frac{6}{5}\Leftrightarrow x=\frac{36}{25}\)
\(c,\sqrt{x+3}+3=0\Leftrightarrow\sqrt{x+3}=-3\)( loại )
\(\frac{5}{12}\sqrt{x}-\frac{1}{6}=\frac{1}{3}\)
\(\frac{5}{12}\sqrt{x}=\frac{1}{3}+\frac{1}{6}\)
\(\frac{5}{12}\sqrt{x}=\frac{1}{2}\)
\(\sqrt{x}=\frac{1}{2}:\frac{5}{12}\)
\(\sqrt{x}=\frac{6}{5}\)
\(\sqrt{x}=\sqrt{\frac{36}{25}}\)
\(x=\frac{36}{25}\)
\(\frac{5}{12}\sqrt{x}-\frac{1}{6}=\frac{1}{3}\)
\(\Leftrightarrow\frac{5}{12}\sqrt{x}=\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{12}\sqrt{x}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{2}:\frac{5}{12}\)
\(\Leftrightarrow\sqrt{x}=\frac{6}{5}\)
\(\Leftrightarrow x=\left(\frac{6}{5}\right)^2\)
\(\Leftrightarrow x=\frac{36}{25}\)
a) \(2\sqrt{x}+3=0\)
\(2\sqrt{x}=-3\)
\(\sqrt{x}=\frac{-3}{2}\)
\(x=\frac{9}{4}\)
vậy \(x=\frac{9}{4}\)
b) \(\frac{5}{12}\sqrt{x}-\frac{1}{6}=\frac{1}{3}\)
\(\frac{5}{12}\sqrt{x}=\frac{1}{3}+\frac{1}{6}\)
\(\frac{5}{12}\sqrt{x}=\frac{1}{2}\)
\(\sqrt{x}=\frac{1}{2}:\frac{5}{12}\)
\(\sqrt{x}=\frac{6}{5}\)
\(x=\frac{36}{25}\)
vậy \(x=\frac{36}{25}\)
c) \(\sqrt{x+3}+3=0\)
\(\sqrt{x+3}=-3\)
\(\Rightarrow x\in\varnothing\) vì ko thỏa mãn ĐKXĐ của căn thức \(x\ge0\)
hay nói khác đi căn thức \(\sqrt{x+3}\) ko có nghĩa
vậy \(x\in\varnothing\)
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........
\(\frac{-15}{12}x+\frac{3}{5}=\frac{6}{5}x-\frac{1}{2}\)
\(\Leftrightarrow\frac{-15}{12}x-\frac{6}{5}x=\frac{-1}{2}-\frac{3}{5}\)
\(\Leftrightarrow\frac{-49}{20}x=\frac{-11}{10}\)
\(\Leftrightarrow x=\frac{22}{49}\)
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
<=> \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> \(x+1=0\) (do 1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)
<=> \(x=-1\)
Vậy...
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
<=> \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> \(x+2010=0\) (do 1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)
<=> \(x=-2010\)
Vậy....
Câu 1:
a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)
\(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)
\(=\frac{1}{2}-\frac{4}{3}\)
\(=-\frac{5}{6}\)
b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=7+\frac{1}{12}+3-\frac{1}{12}-5\)
\(=5\)
Câu 2:
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)
\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
Vậy -1\(\le\)x<7
\(x=\frac{36}{25}\)