Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ix-1,7I = 2,3
TH1: x - 1,7 = 2,3
=> x = 2,3 + 1,7
=> x = 4
TH2 : x - 1,7 = -2,3
=> x = -2,3 + 1,7
=> x = -0,6
b) Ix + 3/4I - 1/3 = 0
=> Ix + 3/4I = 0 + 1/3
=> x + 3/4 = 1/3
=> x = 1/3 - 3/4
=> x = -5/12
a.
\(\left|x-1,7\right|=2,3\)
\(x-1,7=\pm2,3\)
TH1:
\(x-1,7=2,3\)
\(x=2,3+1,7\)
\(x=4\)
TH2:
\(x-1,7=-2,3\)
\(x=-2,3+1,7\)
\(x=-0,6\)
Vậy x = 4 hoặc x = -0,6
b.
\(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
\(x+\frac{3}{4}=\pm\frac{1}{3}\)
TH1:
\(x+\frac{3}{4}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{3}{4}\)
\(x=\frac{4-9}{12}\)
\(x=-\frac{5}{12}\)
TH2:
\(x+\frac{3}{4}=-\frac{1}{3}\)
\(x=-\frac{1}{3}-\frac{3}{4}\)
\(x=\frac{-4-9}{12}\)
\(x=-\frac{13}{12}\)
Vậy x = -5/12 hoặc x = -13/12.
a) |x - 1,7| = 2,3
=> x - 1,7 = 2,3 hoặc x - 1,7 = -2,3
=> x = 4 hoặc x = -0,6
b) |x + 3/4| - 1/3 = 0
=> |x + 3/4| = 1/3
=> x + 3/4 = 1/3 hoặc x + 3/4 = -1/3
=> x = -5/12 hoặc x = -13/12
Chúc e học tốt !
a) \(\left|x-1,7\right|=2,3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1,7=2,3\\x-1,7=-2,3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-0,6\end{cases}}\)
b) \(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{3}\\x+\frac{3}{4}=-\frac{1}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{5}{12}\\x=-\frac{13}{12}\end{cases}}\)
c) \(\left|x+\frac{1}{4}\right|-\frac{3}{4}=0\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\frac{3}{4}\\x+\frac{1}{4}=-\frac{3}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
d) \(2-\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{5}{4}\)
\(\Leftrightarrow\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x-\frac{1}{4}=\frac{3}{4}\\\frac{3}{2}x-\frac{1}{4}=-\frac{3}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{3}{2}x=1\\\frac{3}{2}x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{3}\end{cases}}\)
e) \(\left|4+2x\right|+4x=0\)
\(\Leftrightarrow\left|4+2x\right|=-4x\)
\(\Leftrightarrow\orbr{\begin{cases}4+2x=-4x\\4+2x=4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}-6x=4\\2x=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)
|x + 3/4| - 1/3 = 0
=> |x+3/4| = 1/3
(1) x + 3/4 = 1/3 => x = -5/12
(2) x + 3/4 = -1/3 => x = -13/12
Vậy x =-5/12 hoặc x =-13/12
a) \(\left|x-1,7\right|=2,3\)
\(\Rightarrow\orbr{\begin{cases}x-1,7=2,3\\x-1,7=-2,3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-0,6\end{cases}}\)
b) \(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{3}\\x+\frac{3}{4}=-\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{5}{12}\\x=-\frac{13}{12}\end{cases}}\)
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
a ) Ta có : \(\left|x\right|=2\frac{1}{3}\)
Đổi : \(2\frac{1}{3}=\frac{7}{3}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{7}{3}\\x=-\frac{7}{3}\end{array}\right.\)
Kết luận : \(x\in\left\{\frac{7}{3};-\frac{7}{3}\right\}\)
b ) \(\left|x\right|=-3\)
Vì : \(x< 0\)
\(\Rightarrow x\) không thõa mãn
Kết luận : \(x\in\left\{\varnothing\right\}\)
c ) \(\left|x\right|=-3,15\)
Vì : \(x< 0\)
\(\Rightarrow x\) không thõa mãn
Kết luận : \(x\in\left\{\varnothing\right\}\)
d ) \(\left|x-1,7\right|=2,3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1,7=2,3\\x-1,7=-2,3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-0,6\end{array}\right.\)( thõa mãn )
Kết luận : \(x\in\left\{4;-0,6\right\}\)
e ) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{array}\right.\)
Kết luận \(x\in\left\{-\frac{1}{4};-\frac{5}{4}\right\}\)
\(a,\left|x\right|=2\frac{1}{3}\Rightarrow\left|x\right|=\frac{7}{3}\)
\(\Rightarrow\) \(\begin{cases}x=\frac{7}{3}\\x=\frac{-7}{3}\end{cases}\)
\(b,\left|x\right|=-3\) ( Vì |x| < 0 ) \(\Rightarrow x\in\varnothing\)
\(c,\left|x\right|=-3,15\) (Vì \(\left|x\right|< 0\) ) \(\Rightarrow x\in\varnothing\)
\(d,\left|x-1,7\right|=2,3\)
\(\Rightarrow\) \(\begin{cases}x-1,7=2,3\\x-1,7=-2,3\end{cases}\) \(\Rightarrow\) \(\begin{cases}x=2,3+1,7\\x=-2.3+1,7\end{cases}\) \(\Rightarrow\) \(\begin{cases}x=4\\x=-0,6\end{cases}\)
\(e,\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\) \(\Rightarrow\) \(\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}\) \(\Rightarrow\) \(\begin{cases}x=\frac{1}{2}-\frac{3}{4}=-\frac{1}{4}\\x=-\frac{1}{2}-\frac{3}{4}=-\frac{5}{4}\end{cases}\)