Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,5^x+5^{x+2}=650\\ \Rightarrow a,5^x+5^x.25=650\\ \Rightarrow26.5^x=650\\ \Rightarrow5^x=25\\ \Rightarrow5^x=5^2\\ \Rightarrow x=2\)
\(b,3^{x.1}+5.3^{x.1}=162\\ \Rightarrow3^x+5.3^x=162\\ \Rightarrow6.3^x=162\\ \Rightarrow3^x=27\\ \Rightarrow3^x=3^3\\ \Rightarrow x=3\)
(3x+1)^3=-216=(-6)^3
=>3x+1=-6
=>x=...
3^x-1+5.3^x-1=162
=>3^x-1.(1+5)=162
=>3^x-1.6=162
=>3^x-1=162:6=27
=>3^x-1=3^3
=>x-1=3
=>x=4
B(x)=5x2+x-5
=>2B(x)=2(5x2+x-5)
=>2B(x)=10x2+2x-10
+)Ta có : C(x)-2B(x)=A(x)
=>C(x)=A(x)+2B(x)
A(x)+2B(x)=(3x3+3x2+2x-1)+(10x2+2x-10)
A(x)+2B(x)=3x3+3x2+2x-1+10x2+2x-10
A(x)+2B(x)=3x3+(3x2+10x2)+(2x+2x)+(-1-10)
A(x)+2B(x)=3x3+13x2+4x-11
=> C(x)=3x3+13x2+4x-11
\(A\left(x\right)=3x^3+3x^2+2x-1\)
\(B\left(x\right)=5x^2+x-5\)
Ta có : \(C\left(x\right)-2B\left(x\right)=A\left(x\right)\)
\(\Leftrightarrow C\left(x\right)-10x^2+2x-10=3x^3+3x^2+2x-1\)
\(\Leftrightarrow C\left(x\right)=-10x^2+2x-10-3x^3-3x^2-2x+1=0\)
\(\Leftrightarrow C\left(x\right)=-13x^2-9-3x^3=0\)
Vậy \(C\left(x\right)=-13x^2-9-3x^3\)
a) (2x-1)^3=27
b) (2x-1)^4=81
c) (x-2)^5=-32
d) (3x-1)^4=(3x-1)^6
đ) 5^x +5^x+2=650
g) 3^x-1 +5.3^x-1=162
a) (2x-1)3 = 27
(2x-1)3 = 93
2x-1 = 9
2x = 9+1
2x = 10
x = 10:5
x = 2
Vậy x = 2
b) (2x-1)4 = 81
(2x-1)4 = (\(\pm\)34)
2x-1 = \(\pm\)3
Trường hợp 1:
2x-1 = 3
2x = 3+1
2x = 4
x = 4:2
x = 2
Trường hợp 2:
2x-1 = -3
2x = -3+1
2x = -2
x = -2:2
x = -1
Vậy x \(\in[_{ }2;-1]\)
Vì không tìm thấy ngoặc nhọn nên mình dùng tạm ngoặc vuông nhé
a,(x+2)(x+3)-(x+2)(x+5)=6
<=>(x+2)(x+3-x-5)=6
<=>(x+2).-2=6
<=>x+2=-3
<=>x=-3-2=-5
k rồi mình làm tiếp cho
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
2x+ 3= x+ 2
2x- x= 2- 3
x= -1
vậy x=-1
b) \(3^{x-1}+5.3^{x-1}=162 \)
\(3^{x-1}.\left(1+5\right)=162\)
\(3^{x-1}.6=162\)
\(3^{x-1}=162:6\)\(\Rightarrow3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)