K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Ta có:  9 x 2 = 2 x + 1 ⇔ 3 x 2

= 2x + 1 ⇔ |3x| = 2x + 1 (1)

* Trường hợp 1: 3x ≥ 0 ⇔ x  ≥  0 ⇒ |3x| = 3x

Suy ra: 3x = 2x + 1 ⇔ 3x - 2x = 1 ⇔ x = 1

Giá trị x = 1 là nghiệm của phương trình (1).

* Trường hợp 2: 3x < 0 ⇔ x < 0 ⇒ |3x| = -3x

Suy ra: -3x = 2x + 1 ⇔ -3x - 2x = 1 ⇔ -5x = 1 ⇔ x = - 1/5

Giá trị x = - 1/5 thỏa mãn điều kiện x < 0

Vậy x = - 1/5 là nghiệm của phương trình (1).

Vậy x = 1 và x = - 1/5

11 tháng 6 2018

a) Ta có: \(\sqrt{x^2+6x+9}=3x-1\)

\(\Rightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Rightarrow\)\(x+3=3x-1\)

\(\Rightarrow x-3x=-1-3\Rightarrow-2x=-4\Rightarrow x=2\).

b) \(\sqrt{x^4}=7\)

\(\Rightarrow x^2=7\)

\(\Rightarrow x=-7\)hoặc \(x=7\).

c) Ta có: \(x^2+2\sqrt{13}x=-13\)

\(\Rightarrow x^2+2\sqrt{13}x+13=0\)

\(\Rightarrow\left(x+\sqrt{13}\right)^2=0\Rightarrow x+\sqrt{13}=-\sqrt{13}\).

Chúc bn hc tốt!

11 tháng 6 2018

a) \(\sqrt{x^2+6x+9}=3x-1\)

  Ta thấy vế trái là căn bậc hai nên là số không âm => vế phải cũng phải là số không âm

=> \(3x-1\ge0\Rightarrow x\ge\frac{1}{3}\)

Khi đó phương trình tương đương với:

  \(\sqrt{\left(x+3\right)^2}=3x-1\)

 \(\Leftrightarrow\left|\left(x+3\right)\right|=3x-1\)

Do \(x\ge\frac{1}{3}\) nên \(x+3>0\), phương trình trên trở thành:

  \(x+3=3x-1\)

\(\Leftrightarrow x=2\)

Đối chiếu với điều kiện \(x\ge\frac{1}{3}\) thì x =2 thỏa mãn

b) \(\sqrt{x^4}=7\)

   \(\Leftrightarrow x^2=7\)

  \(\Leftrightarrow x=\pm\sqrt{7}\)

c) \(x^2+2\sqrt{13}x+13=0\)

  \(\Leftrightarrow x^2+2\sqrt{13}x+\sqrt{13}^2=0\)

  \(\Leftrightarrow\left(x+\sqrt{13}\right)^2=0\)

  \(\Leftrightarrow x=-\sqrt{13}\)

28 tháng 9 2019

2) \(\frac{1}{5}\sqrt{25x+50}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}\sqrt{25\left(x+2\right)}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.\sqrt{25}.\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9\left(x+2\right)}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9}.\sqrt{x+2}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(-\sqrt{x+2}=-9\)

\(x+2=81\)

\(\Rightarrow x=79\)

3) \(\sqrt{x^2-4x+4}=7x-1\)

\(\sqrt{x^2-2.x.2+2^2}=7x-1\)

\(\sqrt{\left(x-2\right)^2}=7x-1\)

\(x-2=7x-1\)

\(-2=7x-1-x\)

\(-2+1=7x-x\)

\(-1=6x\)

\(-\frac{1}{6}=x\)

\(\Rightarrow x=-\frac{1}{6}\)

7 tháng 9 2020

a) \(\sqrt{25x^2-10x+1}=x+2\)

<=> \(\sqrt{\left(5x-1\right)^2}=x+2\)

<=> \(\left|5x-1\right|=x+2\)

TH1: 5x - 1 \(\ge\)0 <=> x \(\ge\)1/5

Khi đó pt trở thành: 5x - 1 = x + 2

<=> 4x = 3 <=> x = 3/4 (tm)

TH2: 5x - 1 < 0 <=>  x < 1/5

Khi đó pt trở thành:  1 - 5x = x + 2

<=> -6x = 1 <=> x = -1/6 (tm)

Vậy S = {3/4; -1/6}

b) \(\sqrt{4x^2+12x+9}=7\)

<=> \(\sqrt{\left(2x+3\right)^2}=7\)

<=> \(\left|2x+3\right|=7\)

TH1: 2x + 3 \(\ge\)0 <=> x \(\ge\)-3/2

Khi đó pt trở thành: 2x + 3 = 7 <=> 2x = 4 <=> x = 2 (Tm)

TH2: 2x + 3 < 0 <=> x < -3/2

Khi đó pt trở thành: -2x - 3 = 7

<=> -2x = 10 <=> x = -5 (tm)

Vậy S = {-5; 2}

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

24 tháng 11 2018

\(\sqrt{1-4x+4x^2}=5\). Bình phương hai vế,ta có:

\(PT\Leftrightarrow1-4x+4x^2=25\)

\(\Leftrightarrow-4x+4x^2=24\Leftrightarrow4\left(-x+x^2\right)=24\)

\(\Leftrightarrow x^2-x=6\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\) 

21 tháng 8 2017

đầu tiien, tìm đk của x ở dưới căn, tiếp theo, bình phương 2 vế ,thì vế trái sẽ mất dấu căn thức, còn vế phải thì tự tính. Khi mất dấu căn, bài toán sẽ trở nên bt, tính ra kết quả, đối chiếu đk tìm đc ở trên và kết luận. 4 bài trên , bài nào cx có thể lm như thế !

a: \(P=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1+\sqrt{x}}{x+1}\)

\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)