Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (5x3 - 3x2) : x2 = 7
5x3 : x2 - 3x2 : x2 = 7
5x - 3 = 7
5x = 7 + 3
5x = 10
x = 10 : 5
x = 2
Vậy x = 2
b) (12x3 - 8x) : x - 4x(3x - 1) = 0
12x3 : x - 8x : x - 12x2 + 4x = 0
12x2 - 8 - 12x2 + 4x = 0
-8 + 4x = 0
4x = 0 + 8
4x = 8
x = 8 : 2
x = 4
Vậy x = 4
Bài 1 :
a) (3a+4b)3+(3a-4b)3-48a2b2
=27a3+108a2b+144ab2+64b3+27a3-108a2b+144ab2-64b3-48a2b2
=54a3+288ab2-48a2b2
=2a(27a2+144b2-24ab)
b) (5x+2y)(5x-2y)+(2x-y)3+(2x+y)3
=25x2-4y2+8x3-12x2y+6xy2-y3+8x3+12x2y+6xy2+y3
=16x3+25x2-y2+12xy2
=x2(16x+25)-y2(1-12x)
Bài 2 :
\(x^2-8x+7=0\)
\(\Leftrightarrow x^2-x-7x+7=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
b)\(x^3-4x^2+3x=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{3}\\x=1\end{cases}}\)
c)Nếu đề đổi thành =1 thì có vẻ hợp lí hơn
d)\(\left(3x-1\right)^3-3\left(3x+2\right)^2+13=0\)
\(\Leftrightarrow27x^3-27x^2+9x-1-3\left(9x^2+12x+4\right)+13=0\)
\(\Leftrightarrow27x^3-27x^2+9x-1-27x^2-36x-12+13=0\)
\(\Leftrightarrow27x^3-54x^2-27x=0\)
\(\Leftrightarrow27x\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}27x=0\\x^2-2x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\-\left(x^2+2x+1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\-\left(x+1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
#H
a.\(x^3-6x^2+12x-8=0\Rightarrow\)\(\left(x-2\right)^3=0\Rightarrow x=2\)
b.\(x^3+9x^2+27x+27=0\Rightarrow\left(x+3\right)^3=0\)\(\Rightarrow x=-3\)
c. \(8x^3-12x^2+6x-1=0\)
\(\Rightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow x=\frac{1}{2}\)
a/ \(\left(2x-3\right)^2-\left(3x+2\right)^2=5x\left(2-x\right)\)
<=> \(\left(2x-3-3x-2\right)\left(2x-3+3x+2\right)=5x\left(2-x\right)\)
<=> \(\left(-x-5\right)\left(5x-1\right)=5x\left(2-x\right)\)
<=> \(-5x^2-25x+x+5=10x-5x^2\)
<=> \(10x+25x-x=5\)
<=> \(34x=5\)
<=> \(x=\frac{5}{34}\)
b/ pt <=> \(2^3x^3-3.2^2.x^2.1+3.2.x.1^2-1^3=0\)
<=> \(\left(2x-1\right)^3=0\)
<=> 2 x - 1 = 0
<=> x = 1/2.
\(\Leftrightarrow8x^3-4x^2+16x^2-8x+14x-7=0\\ \Leftrightarrow\left(2x-1\right)\left(4x^2+8x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\4x^2+8x+4+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\4\left(x+1\right)^2+3=0\left(\text{vô nghiệm}\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{1}{2}\)
Giải:
1) \(x^3-3x^2+3x-2=0\)
\(\Leftrightarrow x^3-3x^2+3x-1-1=0\)
\(\Leftrightarrow\left(x-1\right)^3-1=0\)
\(\Leftrightarrow\left(x-1-1\right)\left[\left(x-1\right)^2+x-1+1\right]=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy ...
2) \(8x^3+12x^2+6x+\dfrac{7}{8}=0\)
\(\Leftrightarrow8x^3+12x^2+6x+1-\dfrac{1}{8}=0\)
\(\Leftrightarrow\left(2x+1\right)^3-\left(\dfrac{1}{2}\right)^3=0\)
\(\Leftrightarrow\left(2x+1-\dfrac{1}{2}\right)\left[\left(2x+1\right)^2+\left(2x+1\right)\dfrac{1}{2}+\dfrac{1}{4}\right]=0\)
\(\Leftrightarrow2x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
Vậy ...
3) \(x^3-9x^2+27x-19=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+8=0\)
\(\Leftrightarrow\left(x-3\right)^3+2^3=0\)
\(\Leftrightarrow\left(x-3+2\right)\left[\left(x-3\right)^2-2\left(x-3\right)+4\right]=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ...
Chúc chị học tốt trong thời gian tới nha! ^^
( 4x - 1 )3 + ( 3 - 4x )( 9 + 12x + 16x2 ) = ( 8x - 1 )( 8x + 1 ) - ( 3x - 5 )
<=> 64x3 - 48x2 + 12x - 1 + [ 33 - ( 4x )3 ] = ( 8x )2 - 1 - 3x + 5
<=> 64x3 - 48x2 + 12x - 1 + 27 - 64x3 = 64x2 - 3x + 4
<=> -48x2 + 12x + 26 = 64x2 - 3x + 4
<=> -48x2 + 12x + 26 - 64x2 + 3x - 4 = 0
<=> -112x2 + 15x + 22 = 0 (*)
\(\Delta=b^2-4ac=15^2-4\cdot\left(-112\right)\cdot22=225+9856=10081\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{\sqrt{10081}-15}{-224}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-15-\sqrt{10081}}{-224}\end{cases}}\)
Lớp 8 sao nghiệm xấu thế -..-
Lời giải:
PT $\Leftrightarrow 8x^3-16x^2+6x+2=0$
$\Leftrightarrow (8x^3-8x^2)-(8x^2-8x)-(2x-2)=0$
$\Leftrightarrow 8x^2(x-1)-8x(x-1)-2(x-1)=0$
$\Leftrightarrow (x-1)(8x^2-8x-2)=0$
$\Leftrightarrow 2(x-1)(4x^2-4x-1)=0$
$\Leftrightarrow x-1=0$ hoặc $4x^2-4x-1=0$
Nếu $x-1=0\Leftrightarrow x=1$
Nếu $4x^2-4x-1=0$
$\Leftrightarrow (2x-1)^2-2=0$
$\Leftrightarrow (2x-1-\sqrt{2})(2x-1+\sqrt{2})=0$
$\Leftrightarrow x=\frac{1\pm \sqrt{2}}{2}$
8x3 - 12x2 + 3x - 7 = 0
<=> (8x3 - 8x2) - (4x2 - 4x) + (7x - 7) = 0
<=> 8x2(x - 1) - 4x(x - 1) + 7(x - 1) = 0
<=> (8x2 - 4x + 7)(x - 1) = 0
<=> x - 1 = 0 vì 8x2 - 4x + 7 = 4(4x2 - x + 1/16)+ 27/4 = 4(2x - 1/4)2 + 27/4 > 0
<=> x = 1