Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-11x-26=0\)
\(x^2-13x+2x-26=0\)
\(x.\left(x-13\right)+2.\left(x-13\right)=0\)
\(\left(x+2\right).\left(x-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-13=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=13\end{cases}}\)
vậy...
P/S: lớp 7 sai sót mong thông cảm
a ) \(x^2-11x-26=0\)
\(\Leftrightarrow x^2-13x+2x-26=0\)
\(\Leftrightarrow x\left(x-13\right)+2\left(x-13\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=13\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-2\\x=13\end{matrix}\right.\)
b ) \(2x^2+7x-4=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{7}{2}x-2\right)=0\)
\(\Leftrightarrow x^2+\dfrac{7}{2}x-2=0\)
\(\Leftrightarrow x^2+\dfrac{7}{2}x+\dfrac{49}{16}-\dfrac{81}{16}=0\)
\(\Leftrightarrow\left(x+\dfrac{7}{4}\right)^2=\dfrac{81}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{7}{4}=\dfrac{9}{4}\\x+\dfrac{7}{4}=-\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-4\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-4\end{matrix}\right.\)
c ) \(\left(x-2\right)\left(x-3\right)+\left(x-2\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
vì \(x^4+2x^2+1=\left(x^2+1\right)^2\) mà \(x^2\ge0\Rightarrow x^2+1>0\Rightarrow\left(x^2+1\right)^2>0\)với mọi x.Nên x-3=0 .Từ đó suy ra x=3
Ta có: \(5x^2-4xy+2x-2y+y^2+2=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x-2y\right)+1+\left(x^2-2x+1\right)==0\)
\(\Leftrightarrow\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+\left(x-1\right)^2=0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-y+1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
\(\dfrac{1}{x^2+x+1}+x-1=0\)
\(\Leftrightarrow\dfrac{1+\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=0\)
=> 1 + x3 - 1 = 0
<=> x3 = 0
=> x = 0
Vậy .....
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
\(\left(8x-4x^2-1\right)\left(x^2+2x-1\right)=4\left(x^2+x+1\right)\)
\(11x^2+6x-4x^4-1=4x^2+4x+4\)
\(11x^2+6x-4x^4-4x^2-4x-4=0\)
\(7x^2+2x-4x^4-5=0\)
\(\left(x-1\right)\left(x-1\right)\left(-4x^2-8x-5\right)=0\)
bn lm nốt nha , ko có dấu hoặc nên mk làm đến đây thôi
Cảm ơn nha ! Nhưng sao mình ko ấn đúng cho bạn được !? hic
\(2x^2-2x=0\)
\(2x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy......
2x^2-2x=0
<=>2x(x-1)=0
<=>2x=0 hay x-1=0
<=>x=0 hay x=1