Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 2x-1+ 5.2x-1:2=7/32
=> 2x+1.(1+5/2)=7/32
=>2x+1.7/2=7/32
=> 2x+1=1/16=1/24
=> x+1=-4=>x=-5
a) \(\left(\frac{1}{2}\right)^x=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\)
=> x = 5
b) \(\left(\frac{5}{7}\right)^x=\frac{125}{343}\)
\(\left(\frac{5}{7}\right)^x=\left(\frac{5}{7}\right)^3\)
=> x = 3
3x = 2y ; 7x = 5z
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tích chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=2\Rightarrow z=42\)
Bài 3 :
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : \(A=\left(x-2\right)^2-4\ge-4\forall x\)
Vậy \(A_{min}=-4\) khi x = 2
B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)
B2:
a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)
\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)
B3:
Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x = 2
Vậy GTNN của A = -4 khi x = 2
\(2^{x-1}+5.2^{x-2}=\frac{7}{32}\Leftrightarrow\frac{2^x}{2}+5.\frac{2^x}{2^2}=\frac{7}{32}\Leftrightarrow2^x\left(\frac{1}{2}+\frac{5}{4}\right)=\frac{7}{32}\Leftrightarrow2^x=\frac{1}{8}=2^{-3}\)
<=> x=-3