Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2016x+x\frac{1}{2016}-2016=\frac{1}{2016}\)
\(\Rightarrow2016x-2016+x.\frac{1}{2016}-\frac{1}{2016}=0\)
\(\Rightarrow2016.\left(x-1\right)+\frac{1}{2016}.\left(x-1\right)=0\)
\(\Rightarrow\left(2016+\frac{1}{2016}\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2016+\frac{1}{1016}=0\text{ (loại vì }2016+\frac{1}{2016}>0\text{)}\text{ }\\x-1=0\end{cases}}\)
\(\Rightarrow x=1\)
\(2016x+x\frac{1}{2016}-2016=\frac{1}{2016}\)
\(\Leftrightarrow x\left(2016+\frac{1}{2016}\right)=\frac{1}{2016}+2016\)
\(\Leftrightarrow x=\left(2016+\frac{1}{2016}\right):\left(2016+\frac{1}{2016}\right)\)
\(\Leftrightarrow x=1\)
Bạn chú ý trong tích A có chứa thừa số \(1-\frac{2016}{2016}=1-1=0\)
Vì tích có 1 thừa số bằng 0 nên cả tích sẽ bằng 0
Vậy A=0
P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)
P \(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
P\(=\frac{1.51}{50.2}=\frac{51}{100}\)
\(\frac{x+2016}{-3}=-\frac{12}{x+2016}\)
\(\Rightarrow\left(x+2016\right)^2=-3.\left(-12\right)\)
\(\Rightarrow\left(x+2016\right)^2=36\)
\(\Rightarrow\left(x+2016\right)^2=6^2\)
\(\Rightarrow x+2016=6\)
\(\Rightarrow x=6-2016\)
\(\Rightarrow x=-2010\)