Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2-x\right)\left(\dfrac{4}{5}-x\right)< 0\)
=>Trong 2 số phải có 1 số âm và 1 số dương
Mà \(2-x>\dfrac{4}{5}-x\)
=>\(\dfrac{4}{5}< x< 2\)
Vậy...
a. \(\dfrac{1}{3}.\left(x-1\right)+\dfrac{2}{5}.\left(x+1\right)=0\)
=> \(\dfrac{1}{3}x-\dfrac{1}{3}+\dfrac{2}{5}x+\dfrac{2}{5}=0\)
=> \(\dfrac{1}{3}x+\dfrac{2}{5}x=0+\dfrac{1}{3}-\dfrac{2}{5}\)
=> \(\dfrac{11}{15}x=\dfrac{-1}{15}\)
=> \(x=\dfrac{-1}{11}\)
Đây toán 8 mà? :v
a,\(\dfrac{1}{5}x\left(x-1\right)+\dfrac{2}{5}x\left(x+1\right)=0\)
\(\Leftrightarrow5x\left(x-1\right)+6x\left(x+1\right)=0\)
\(\Leftrightarrow\left[5\left(x-1\right)+6x\left(x+1\right)\right]x=0\)
\(\Leftrightarrow\left(5x-5+6x+6\right)x=0\)
\(\Leftrightarrow\left(11+1\right)x=0\)
\(\Leftrightarrow11x+1=0;x=0\)
\(\Leftrightarrow x=-\dfrac{1}{11};x=0\)
Vậy....
a) ta có : \(\left(x-\dfrac{1}{3}\right).\left(x+\dfrac{2}{3}\right)>0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>\dfrac{-2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< \dfrac{-2}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< \dfrac{-2}{3}\end{matrix}\right.\) vậy \(x>\dfrac{1}{3}\) hoặc \(x< \dfrac{-2}{3}\)
b) \(\left(x+\dfrac{3}{5}\right).\left(x+1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\\x+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{-3}{5}\\x< -1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{-3}{5}\\x>-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-1< x< \dfrac{-3}{5}\end{matrix}\right.\) vậy \(-1< x< \dfrac{-3}{5}\)
\(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\Rightarrow x>\dfrac{1}{3}\\x+\dfrac{2}{3}>0\Rightarrow x>-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\Rightarrow x< \dfrac{1}{3}\\x+\dfrac{2}{3}< 0\Rightarrow x< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x>-\dfrac{2}{3}\) hoặc \(x< \dfrac{1}{3}\)
\(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\Rightarrow x< -\dfrac{3}{5}\\x+1>0\Rightarrow x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\Rightarrow x>-\dfrac{3}{5}\\x+1< 0\Rightarrow x< -1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< -\dfrac{3}{5}\)
I , tìm x :
a, \(\left|x\right|=1,21\)
Ta có : \(\left|x\right|=\left|1,21\right|\rightarrow\left|x\right|=\pm1,21\)
b, \(\dfrac{11}{12}-\left(\dfrac{2}{5}-x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}-x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}-x=\dfrac{1}{4}\) => \(x=\dfrac{2}{5}-\dfrac{1}{4}\)
=> \(x=\dfrac{3}{20}\)
c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}\div x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}\div x=\dfrac{-7}{20}\) => \(x=\dfrac{1}{4}\div\dfrac{-7}{20}\)
=> \(x=\dfrac{-5}{7}\)
d,\(3^x=81\)
Ta có 81= \(3^4\)
Vì : \(3^x=3^4\Rightarrow x=4\)
e,\(\dfrac{1}{2}.\left|x\right|-\dfrac{5}{2}=\dfrac{8}{3}\)
\(\left|x\right|-\dfrac{5}{6}=\dfrac{8}{3}:\dfrac{1}{2}\)
=> \(\left|x\right|-\dfrac{5}{2}=\dfrac{16}{3}\) => \(\left|x\right|=\dfrac{16}{3}+\dfrac{5}{2}\)
=> \(\left|x\right|=\dfrac{47}{6}\)
Vì \(\left|x\right|=\left|\dfrac{47}{6}\right|\Rightarrow x=\pm\dfrac{47}{6}\)
f, \(2^{x-3}=4\)
\(2^{x-3}=2^2\)
=> \(x-3=2\)
=> \(x=5\)
a, Ta có \(\left|x\right|=1,21\)
\(\Rightarrow\left[{}\begin{matrix}x=1,21\\x=-1,21\end{matrix}\right.\)
Vậy \(x\in\left\{1,21;-1,21\right\}\)
a: \(\Leftrightarrow7^x\cdot49+7^x\cdot\dfrac{2}{7}=345\)
\(\Leftrightarrow7^x=7\)
hay x=1
c: \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)
=>x-1=2
hay x=3
d: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\Leftrightarrow5^x=5^2\cdot5^3=5^5\)
hay x=5
Lời giải:
PT \(\Leftrightarrow \frac{(x+4)-(x+2)}{(x+2)(x+4)}+\frac{(x+8)-(x+4)}{(x+4)(x+8)}+\frac{(x+14)-(x+8)}{(x+8)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{12}{(x+2)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Rightarrow x=12\) (thỏa mãn)
Vậy......
1: \(A=\dfrac{-25}{27}-\dfrac{31}{42}+\dfrac{7}{27}+\dfrac{3}{42}=\dfrac{-2}{3}-\dfrac{2}{3}=\dfrac{-4}{3}\)
2: \(B=\dfrac{10.3-\left(9.5-4.5\right)\cdot2}{1.2-1.5}=\dfrac{10.3-10}{-0.3}=-1\)
c: \(=\dfrac{3}{49}\left(\dfrac{19}{2}-\dfrac{5}{2}\right)-\left(\dfrac{1}{20}-\dfrac{5}{20}\right)^2\cdot\left(\dfrac{-7}{14}-\dfrac{193}{14}\right)\)
\(=\dfrac{3}{49}\cdot7-\dfrac{1}{25}\cdot\dfrac{-200}{14}\)
\(=\dfrac{3}{7}+\dfrac{8}{14}=1\)
Ta có:
\(B=\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}=\dfrac{\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)}{\dfrac{4}{25}.\left(-\dfrac{125}{1728}\right)}\\ =\dfrac{-\dfrac{1}{6}}{-\dfrac{5}{432}}=\dfrac{72}{5}\)
Vậy B = \(\dfrac{72}{5}\)
1: =>|1/4x^2+1/45|=1/20
=>1/4x^2+1/45=1/20 hoặc 1/4x^2+1/45=-1/20
=>1/4x^2=1/36
=>x^2=1/36:1/4=1/9
=>x=1/3 hoặc x=-1/3
2: =(x^2-3)(x^2-2x)
=x(x-2)(x^2-3)