K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 6(x + 1)2 - 2(x + 1)+ 2(x - 1)(x+ x + 1) = 1 

<=> 6(x2 + 2x + 1) - 2(x3 + 3x + 3 + 1) + 2(x3 - 1) = 1

<=> 6x2 + 12x + 6 - 2x3 - 6x - 6 - 3 + 2x3 - 2 = 1

<=> 6x2 + 6x - 5 = 1

Sorry máy đơ mk giải tiếp nhé : 6x2 + 6x - 5 = 1 

<=> 6x2 + 6x - 6 = 0 

<=> x2 + x - 1 = 0 

<=> x2 + x + \(\frac{1}{4}-\frac{5}{4}=0\)

<=> \(\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\sqrt{\frac{5}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}}-\frac{1}{2}\\x=-\frac{1}{2}-\sqrt{\frac{5}{4}}\end{cases}}\)

a) Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-1\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

12 tháng 8 2021

a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)

\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b,\(< =>25x^2+10x+1-25x^2+9-30=0\)

\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)

c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)

\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)

\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)

\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)

a: Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)

b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

b: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)

\(\Leftrightarrow12x=12\)

hay x=2

d: Ta có: \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)

\(\Leftrightarrow3x^2-6x+3-3x^2+15x=1\)

\(\Leftrightarrow9x=-2\)

hay \(x=-\dfrac{2}{9}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:

a. $x(3x+1)+(x-1)^2-(2x+1)(2x-1)=0$

$\Leftrightarrow (3x^2+x)+(x^2-2x+1)-(4x^2-1)=0$

$\Leftrightarrow 3x^2+x+x^2-2x+1-4x^2+1=0$

$\Leftrightarrow (3x^2+x^2-4x^2)+(x-2x)+(1+1)=0$

$\Leftrightarrow -x+2=0$

$\Leftrightarrow x=2$

b.

$(x+1)^3+(2-x)^3-9(x-3)(x+3)=0$

$\Leftrightarrow [(x+1)+(2-x)][(x+1)^2-(x+1)(2-x)+(2-x)^2]-9(x-3)(x+3)=0$

$\Leftrightarrow 3[x^2+2x+1-(x-x^2+2)+(x^2-4x+4)]-9(x-3)(x+3)=0$

$\Leftrightarrow 3(3x^2-3x+3)-9(x^2-9)=0$

$\Leftrightarrow 9(x^2-x+1)-9(x^2-9)=0$

$\Leftrightarrow 9(x^2-x+1-x^2+9)=0$
$\Leftrightarrow 9(-x+10)=0$

$\Leftrightarrow -x+10=0\Leftrightarrow x=10$

 

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

c.

$(x-1)^3-(x+3)(x^2-3x+9)+3x^2=25$

$\Leftrightarrow (x^3-3x^2+3x-1)-(x^3+3^3)+3x^2=25$

$\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2=25$
$\Leftrightarrow (x^3-x^3)+(-3x^2+3x^2)+3x-28=25$

$\Leftrightarrow 3x-28=25$

$\Leftrightarrow x=\frac{53}{3}$

d.

$(x+2)^3-(x+1)(x^2-x+1)-6(x-1)^2=23$
$\Leftrightarrow (x^3+6x^2+12x+8)-(x^3+1)-6(x^2-2x+1)=23$

$\Leftrightarrow x^3+6x^2+12x+8-x^3-1-6x^2+12x-6=23$

$\Leftrightarrow (x^3-x^3)+(6x^2-6x^2)+(12x+12x)+(8-1-6)=23$
$\Leftrightarrow 24x+1=23$

$\Leftrgihtarrow 24x=22$

$\Leftrightarrow x=\frac{11}{12}$

21 tháng 7 2021

Bài 10:

a) (x+2)2 -x(x+3) + 5x = -20

=> x2 + 4x + 4 - x2 - 3x + 5x = -20

=> 6x = -20 + (-4)

=> 6x = -24

=> x = -4

b) 5x3-10x2+5x=0   

=>5x(x2-2x+1)=0

=>5x(x-1)2 =0

=> 5x=0 hoặc (x-1)2=0

=>x=0 hoặc x=1

c) (x- 1)- (x+ x+ 1)(x- 1) = 0

=> (x2 - 1)[(x- 1)2 -  (x+ x+ 1)] = 0

<=> (x2 - 1)(x4 - 2x2 + 1 - x- x- 1) = 0

<=>  (x2 - 1)(-3x2) = 0

<=> (x2 - 1)=0 hoặc (-3x2) =0

<=> x2=1 hoặc x2=0

<=> x=−1;1 hoặc x=0

d)

(x+1)3−(x−1)3−6(x−1)2=-19

⇔x3+3x2+3x+1−(x3−3x2+3x−1)−6(x2−2x+1)+19=0

⇔x3+3x2+3x+1−x3+3x2−3x+1−6x2+12x−6+19=0

⇔12x+13=0⇔12x+13=0

⇔12x=-13

⇔x=-23/12

Học tốt nhé:333banhqua

 

 

 

a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(\Leftrightarrow6x-9+4-2x=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

1 tháng 10 2021

giải phần còn lại giúp mình được ko?

a: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+1+3x^2=-33\)

\(\Leftrightarrow39x=-34\)

hay \(x=-\dfrac{34}{39}\)

b: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-2\right)\left(x+2\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x=28\)

hay x=7

c: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)

\(\Leftrightarrow x^3+8-x^3+9x=26\)

\(\Leftrightarrow x=2\)

2 tháng 10 2021

giúp mình với mọi người ơi