Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)
\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
1/
a. \(3x\left(5x^2-2x-1\right)\)
\(=15x^3-6x^2-3x\)
b. \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c. \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)
\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)
\(=2x^3-x^2y-2xy^2\)
a) thiếu đề
b) \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)
\(15x-63x^2-15+63x+63x^2-35x+36x-20=44\)
\(79x-35=40\)
\(79x=75\)
\(x=\frac{75}{79}\)
a) x3-x2-21x+45=0
<=> x3+5x2-6x2-30x+9x+45=0
<=> (x+5)(x2-6x+9)=0
<=> (x+5)(x2-3x-3x+9)=0
<=> (x+5)(x-3)2=0
Vậy S={-5;3}
b) X3+3X2+4X+2=0
<=> X3+X2+2X2+2X+2X+2=0
<=> (X+1)(X2+2X+2)=0
VÌ X2+2X+2 >=0
NÊN S={-1}
C) X4+7X-8=0
<=> X4-X3+X3-X2+X2-X+8X-8=0
<=> (X-1)(X3+X2+X+8)=0
VÌ X3+X2+X+8>=0
NÊN S={1}
D) 6X4-X3-7X2+X+1=0
<=> 6X4-6X3+5X3-5X2-2X2+2X-X+1=0
<=> (X-1)(6X3+5X2-2X-1)=0
<=> (X-1)(6X3-3X2+8X2-4X+2X-1)=0
<=> (X-1)(2X-1)(3X2_4X+1)=0
<=> (X-1)(2X-1)(3X2-3x-x+1)=0
<=> (X-1)2(2X-1)(3x-1)=0
vậy S={1/3;1/2;1}
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
9: \(=x^2\left(x+2\right)+\left(x+2\right)=\left(x+2\right)\left(x^2+1\right)\)
10: \(=x^2\left(x+2\right)-\left(x+2\right)=\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
11: \(=x^3+5x^2-6x^2-30x+9x+45\)
\(=\left(x+5\right)\left(x^2-6x+9\right)\)
\(=\left(x+5\right)\left(x-3\right)^2\)
Ta có: (3x-3)(5-21x)+(7x+4)(6x-5)=45
\(\Leftrightarrow15x-63x^2-15+63x+42x^2-35x+24x-20-45=0\)
\(\Leftrightarrow-21x^2+67x-80=0\)
\(\Leftrightarrow-21\left(x^2-\frac{67}{21}x-\frac{80}{21}\right)=0\)
mà -21<0
nên \(x^2-\frac{67}{21}x-\frac{80}{21}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{67}{42}+\frac{4489}{1764}-\frac{11209}{1764}=0\)
\(\Leftrightarrow\left(x-\frac{67}{42}\right)^2=\frac{11209}{1764}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{67}{42}=\frac{\sqrt{11209}}{42}\\x-\frac{67}{42}=-\frac{\sqrt{11209}}{42}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{67+\sqrt{11209}}{42}\\x=\frac{67-\sqrt{11209}}{42}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{67+\sqrt{11209}}{42};\frac{67-\sqrt{11209}}{42}\right\}\)