K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

Ta có : 

\(\frac{1}{2018x}=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)

\(\Rightarrow\frac{1}{2018x}=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{4}{4}-\frac{1}{4}\right)...\left(\frac{2017}{2017}-\frac{1}{2017}\right)\left(\frac{2018}{2018}-\frac{1}{2018}\right)\)

\(\Rightarrow\frac{1}{2018x}=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2016}{2017}.\frac{2017}{2018}\)

\(\Rightarrow\frac{1}{2018x}=\frac{1}{2018}\)

\(\Rightarrow2018x=2018\)

\(\Rightarrow x=2018:2018\)

\(\Rightarrow x=1\)

Vậy \(x=1\)

Chúc bạn học tốt !!! 

20 tháng 5 2018

1/2018 * x = ( 1 - 1/2 ) * ( 1 - 1/3 ) * ( 1 - 1/4 ) * ... ( 1 - 1/2018 ) 

1/2018 * x = 1/2 * 2/3 * 3/4 * ... * 2017/2018 

1/2018 * x = 1/2018 

x = 1/2018 : 1/2018 

x = 1 

24 tháng 7 2018

a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)

Thế vào bởi các số sẽ có kết quả

b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)

Làm tương tự trên

c) Lấy nhân tử chung là 5 rồi làm như câu a)

24 tháng 7 2018

bạn có thể làm ra hộ mình được ko mình ko hiểu

4 tháng 4 2020

\(A=1-3+5-7+......-2019+2021-2023\)

\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)

\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)

\(A=-2.506\)

\(A=-1012\)

4 tháng 4 2020

*) A=(1-3)+(5-7)+....+(2021-2023)

<=> A=-2+(-2)+...+(-2)

Dãy A có (2023-1):2+1=1012 số số hạng 

=> Có 506 số (-2)

=> A=(-2).506=-1012

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

12 tháng 5 2018

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)

\(\Leftrightarrow x+2=41\)

\(\Leftrightarrow x=41-2\)

\(\Leftrightarrow x=39\)

5 tháng 4 2020

???????????????????????????????????????????????????????

Giải:

a) \(75\%+1,2-2+\dfrac{1}{5}+2018^0\) 

=\(\dfrac{3}{4}+\dfrac{6}{5}-2+\dfrac{1}{5}+1\) 

=\(\left(\dfrac{6}{5}+\dfrac{1}{5}\right)+\left(\dfrac{3}{4}-2+1\right)\) 

=\(\dfrac{7}{5}+\dfrac{-1}{4}\) 

=\(\dfrac{23}{20}\) 

b) \(\left(\dfrac{-4}{3}+0,75\right):\dfrac{2017}{2018}+\left(1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\) 

=\(\left(\dfrac{-4}{3}+0,75+1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\) 

=\(\left[\left(\dfrac{-4}{3}+1+\dfrac{1}{3}\right)+\left(0,75-75\%\right)\right]:\dfrac{2017}{2018}\) 

=\(\left[0+0\right]:\dfrac{2017}{2018}\) 

=0\(:\dfrac{2017}{2018}\) 

=0

c)\(\left(2018-\dfrac{1}{3}-\dfrac{2}{4}-\dfrac{3}{5}-\dfrac{4}{6}-...-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)

=\(\left(1-\dfrac{1}{3}-1-\dfrac{2}{4}-1-\dfrac{3}{5}-1-\dfrac{4}{6}-...-1-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) 

=\(\left(\dfrac{2}{3}-\dfrac{2}{4}-\dfrac{2}{5}-\dfrac{2}{6}-...-\dfrac{2}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left[2.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[\dfrac{5}{5}.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[5.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(10.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =-10

31 tháng 7 2018

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2017}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\)

\(A=\frac{1}{2017}\)

31 tháng 7 2018

\(\frac{1-1}{2}.\frac{1-1}{3}.\frac{1-1}{4}......\frac{1-1}{2017}.\frac{1-1}{2018}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}........\frac{2016}{2017}.\frac{2017}{2018}\)

\(=\frac{1}{2018}\)