Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC( n+ 1, 2n + 5 )
\(n+1\Rightarrow2.\left(n+1\right)⋮d\Rightarrow\)\(2n+2⋮d\)
\(2n+5⋮d\)
\(\Rightarrow2n+5-\left(2n+2\right)⋮d\)
\(\Rightarrow5-2⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow3⋮4\)
\(\Rightarrow\)không thể được.
Vậy 4 không thể là ước chung của n+1 và 2n + 5
Bài 1:
Ta có: \(2+2^2+2^3+...+2^{2010}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right).\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(2+2^2+2^3+...+2^{2010}=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
bài 2:
Gọi d là ƯCLN của 2n+3 và 3n+4 \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}1⋮d\Rightarrow d=1}\)
\(\RightarrowƯCLN\left(2n+3;3n+4\right)=1\)
\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
a/ước chung là 3
b/ước chung là 1
mk chỉ làm mẫu 2 câu thôi còn bạn tự làm đi
Gọi ƯC(2n+1;3n+1)=d
Ta có:
+/2n+1 chia hết cho d=>3(2n+1) chia hết cho d
hay 6n+3 chia hết cho d(1)
+/3n+1 chia hết cho d=>2(3n+1) chia hết cho d
hay 6n+2 chia het cho d(2)
Từ (1) va (2) =>(6n+3-6n-2) chia hết cho d
=>1 chia hết cho d
=>d la ước cua 1
=>d thuộc tập hợp 1 ; -1
=>tập hợp ước chung của 2n+1 và 3n+1 là -1;1
Gọi d là Ưcln của 2n + 1 và 3n + 1
Khi đó : 2n + 1 chia hết cho d và 3n + 1 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 2,(3n + 1) chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 2 chia hết cho d
=> (6n + 3) - (6n + 2) chia hết cho d => 1 chia hết cho d => d = 1
=>ƯCLN của 2n + 1 và 3n + 1 là 1
=> ƯC của 2n + 1 và 3n + 1 là -1 ; 1
gọi ƯC(2n-1,3n+1) là d (d khác 0)
Ta có 2n-1 chia hết cho d
=> 3(2n-1) chia hết cho d <=> 6n-3 chia hết cho d (1)
Lại có 3n+1 chia hết cho d
=> 2(3n+1) chia hết cho d <=> 6n+2 chia hết cho d (2)
Từ (1) và (2) => (6n+2-6n+3) chia hết cho d <=> 5 chia hết cho d
=> d là ước của 5
=> d=-1,1,-5,5
=> ước chung của 2n-1 và 3n+1 là -1,1,-5,5
Gọi ƯC(2n + 1 và 3n + 1)= d
Ta có :
2n + 1 chia hết cho d => 3(2n + 1 ) chia hết cho d
Hay 6n + 3 chia hết cho d ( 1 )
3n + 1 chia hết cho d => 2(3n + 1 ) chia hết cho d
Hay 6n + 2 chia hết cho d ( 2 )
Từ (1 ) và ( 2 ) => ( 6n + 3 - 6n - 2 ) chia hết cho d
=> 1 chia hết cho d
=> d là ước của 1
=> d thuộc tập hợp ước của 1
=> tập hợp ước chung của 2n + 1 và 3n + 1 là -1 và 1
Gọi d là ước chung của 5n + 6 và 8n + 7
=> d là ước 3n + 1
=> d là ước chung của 5n + 6 và 3n + 1 → d là ước 2n + 5
=> d là ước chung của 3n + 1 và 2n + 5 → d là ước n - 4
=> d là ước chung của 2n + 5 và n - 4 → d là ước của n + 9
=> d là ước chung của n + 9 và n - 4 → d là ước của 13
Vậy tập hợp các ước chung ( không âm ) của 5n + 6 và 8n + 7 = { 1 ; 13 }
Nếu n # 4 + 13 k thì tập hợp ước chung của 5n + 6 và 8n + 7 là 1