Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=(21n+4,14n+3)
=> 21n+4 chia hết cho d
14n+3 chia hết cho d
=> 42n+8 chia hết cho d
42n+9 chia hết cho d
=> 42n+9-(42n+8) chia hết cho d
<=> 1 chia hết cho d
=> d=1
Vậy (21n+4,14n+3)=1
Gọi ƯCLN(21n+4;14n+3)=d
suy ra 21n+4 chia hết cho d 14n+3 chia hết cho d
42n+8 chia hết cho d (1) 42n+9 chia hết cho d (2)
Từ 1 và 2 suy ra:
(42n+9)-(42n+8) chia hết cho d
42n+9-42n-8 chia hết cho d
1 chia hết cho d
suy ra d=1
vậy ƯCLN(21n+4;14n+3)=1
a) Gọi UC(2n+3;3n+2) là d ( d là số tự nhiên )
Ta có :
2n+3 chia hết cho d ; 3n+2 chia hết cho d
=> 3.(2n+3) chia hết cho d ; 2.(3n+2) chia hết cho d
=> 6n+9 ; 6n+4 chia hết cho d
=> 6n+9-(6n+4) chia het cho d
=> 5 chia hết cho d
=> d=1;5
b) làm tương tự nhé bạn
Bài1 mình không biết làm
Bài 2:a)vì N và N+1 là hai số tụ nhiên liên tiếp nén ƯCLN của N và n+1 =1
b)Gọi đ =ƯCLN của 14n+3 và 21n+4.
14n+3 chia hết cho đ, 21n+4 chia hết cho d
(21n+4-14n+4)chia hết cho d
2(21n+4)-3(14n+3) chia hết cho d
42n+8-42n+9
42n+9-42n+8=1 chia hết cho d
Suy ra: đ=1
Vậy:ƯCLN(14n+3,21n+4)=1
Bài 3 mình cũng không biết làm
Chúc các bạn thành công
Đat UCLN(14n+3,21n+4)=d suy ra:14n+3 chia het cho d va 21n+4 chia het cho d suy ra:3.(14n+9)chia het cho d va 2.(42n+8) chia het cho d suy ra:(42n+9)-(42n+8) chia het cho d suy ra:1 chia het cho d suy ra:d=1 vay: UCLN(14n+3,21n+4)=1
Đặt UCLN của ( 14n+3, 21n+4) = d
=> 14n+3 chia hết cho d và 21n+4 chia hết cho d
=> ...........................................
tíc mình nha
........................... bn tình BCNN của 14 và 21, xg r thế số
Vì 14n+3 và 21n+4 là hai sô nguyên tố cùng nhau
=>ƯCLN(14n+3,21n+4)=1
Ta có:
Gọi UCLN của hai số đó là d
=>14n+3 chia hết cho d
21n+4 chia hết cho d
=>3.(14n+3)=42n+9 chia hết cho d
2.(21n+4)=42n+8 chia hết cho d
=>42n+9-42n+8 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau(ĐPCM)
Gọi \(ƯCLN\left(21n+4;14n+3\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\)
\(\Rightarrow42n+9-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d.\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)
do \(d\inℕ^∗\Rightarrow d=1\)
Vậy \(ƯCLN\left(21n+4;14n+3\right)=1\)hay \(21n+4\)và \(14n+3\)nguyên tố cùng nhau
gọi d là ƯCcủa hai số 21n +4 và 14n+3
21n+4 và 14n+3 chia hết cho d
=>(21n+4)-(14n+3)=7n+1 chia hết cho d
=>2(7n+1)=14n+2 chia hết cho d
=>(14n+3)-(14n+2) =1 chia hết cho d
=>d =1
ƯCLN=1
ƯSC của 14n+3 và 21n+4=1